NMI

From Nesdev wiki

The 2A03 and most other 6502 family CPUs are capable of processing a non-maskable interrupt (NMI). This
input is edge-sensitive, meaning that if other circuitry on the board pulls the /NMI pin from high to low voltage,
this sets a flip-flop in the CPU. When the CPU checks for interrupts and find that the flip-flop is set, it pushes the
processor status register and return address on the stack, reads the NMI handler's address from $FFFA-$FFFB,
clears the flip-flop, and jumps to this address.

"Non-maskable" means that no state inside the CPU can prevent the NMI from being processed as an interrupt.
However, most boards that use a 6502 CPU's /NMI line allow the CPU to disable the generation of /NMI signals by
writing to a memory-mapped I/O device. In the case of the NES, the /NMI line is connected to the NES PPU and is
used to detect vertical blanking.

Contents

= | Operation

= 2 Caveats
= 2.1 Old emulators
= 2.2 Race condition

Operation

Two 1-bit registers inside the PPU control the generation of NMI signals. Frame timing and accesses to the PPU's
PPUCTRL and PPUSTATUS registers change these registers as follows, regardless of whether rendering is
enabled:

1. Start of vertical blanking: Set NMI_occurred in PPU to true.

2. End of vertical blanking, sometime in pre-render scanline: Set NMI_occurred to false.

3. Read PPUSTATUS: Return old status of NMI_occurred in bit 7, then set NMI_occurred to false.
4. Write to PPUCTRL: Set NMI_output to bit 7.

The PPU pulls /NMI low if and only if both NMI_occurred and NMI_output are true. By toggling NMI_output
(PPUCTRL.7) during vertical blank without reading PPUSTATUS, a program can cause /NMI to be pulled low
multiple times, causing multiple NMIs to be generated.

Caveats

Old emulators

Some platforms, such as the Game Boy, keep a flag turned on through the whole vertical blanking interval. Some
early emulators such as NESticle were developed under the assumption that PPUSTATUS.7 worked the same way
and thus do not turn off NMI_occurred in line 3. Thus, some defective homebrew programs developed in this era
will wait for PPUSTATUS.7 to become false and expect this to happen at the end of vblank. (The right way to wait

https://wiki.nesdev.com/w/index.php/2A03
https://wiki.nesdev.com/w/index.php/PPU_frame_timing
https://wiki.nesdev.com/w/index.php/PPUCTRL
https://wiki.nesdev.com/w/index.php/PPUSTATUS
https://wiki.nesdev.com/w/index.php/PPUSTATUS
https://wiki.nesdev.com/w/index.php/PPUCTRL
https://wiki.nesdev.com/w/index.php/PPUCTRL
https://wiki.nesdev.com/w/index.php/PPUSTATUS
https://wiki.nesdev.com/w/index.php/PPUSTATUS
https://wiki.nesdev.com/w/index.php/Program_Compatibility
https://wiki.nesdev.com/w/index.php/PPUSTATUS

for the end of vblank involves triggering a sprite O hit and waiting for that flag to become 0.) Some newer
homebrew programs have been known to display a diagnostic message if an emulator incorrectly returns true on
two consecutive reads of PPUSTATUS.7.

Race condition

If 1 and 3 happen simultaneously, PPUSTATUS.7 is read as false, and NMI_occurred is set to false anyway. This
means that the following code that waits for vertical blank by spinning on PPUSTATUS.7 is likely to miss an
occasional frame:

iwait_status7:

! bit PPUSTATUS
bpl wait_status?
I rts

Code like wait_status7 is fine while your program is waiting for the PPU to warm up. But once the game is
running, the most reliable way to wait for a vertical blank is to turn on NMI_output and then wait for the NMI
handler to set a variable:

Ewait_nmi:

i lda retraces
i@notYet:

! cmp retraces
| beqg @notYet
. rts
1
1
1

i
inmi_handler:

! 1inc retraces
o 1

1

This handler works for simple cases, and in many cases, it is the simplest thing that could possibly work
(http://c2.com/xp/DoTheSimplestThingThatCouldPossiblyWork .html). But if your game code takes significantly
longer than 24,000 cycles, such as if you have too many critters moving on the screen, it may take longer than one
frame. Waiting for NMI in this way would miss an NMI that happens while other code is running. In some cases,
this could cause a sprite O-triggered scroll split to flicker (or worse). The next step up involves doing VRAM
updates and sprite 0 waiting in a separate NMI thread that is guaranteed to run every frame.

Because Gradius puts its status bar at the bottom, it can't just spin on sprite O all the time. Instead, it counts the
approximate time that each object handler takes and deliberately delays the remaining calculations to the next
frame when it might otherwise come close to missing a sprite O hit. Games developed by Micronics are likely to
reduce a game's overall frame rate far below 60 frames per second to match the worst case of lag.

Retrieved from "https://wiki.nesdev.com/w/index.php?title=NMI&oldid=9714"

= This page was last modified on 15 March 2015, at 19:44.

https://wiki.nesdev.com/w/index.php/PPUSTATUS
https://wiki.nesdev.com/w/index.php/PPUSTATUS
https://wiki.nesdev.com/w/index.php/PPUSTATUS
https://wiki.nesdev.com/w/index.php/PPU_power_up_state
http://c2.com/xp/DoTheSimplestThingThatCouldPossiblyWork.html
https://wiki.nesdev.com/w/index.php/NMI_thread
https://en.wikipedia.org/wiki/Micronics
https://wiki.nesdev.com/w/index.php?title=NMI&oldid=9714

