
PPU programmer reference
From Nesdev wiki

Contents
1 PPU Registers
2 Summary
3 Ports

3.1 Controller ($2000) > write
3.1.1 Master/slave mode and the EXT pins
3.1.2 Bit 0 bus conflict

3.2 Mask ($2001) > write
3.2.1 Render Control
3.2.2 Color Control

3.3 Status ($2002) < read
3.3.1 Notes

3.4 OAM address ($2003) > write
3.4.1 Values during rendering
3.4.2 OAMADDR precautions

3.5 OAM data ($2004) <> read/write
3.6 Scroll ($2005) >> write x2
3.7 Address ($2006) >> write x2

3.7.1 note
3.8 Data ($2007) <> read/write

3.8.1 The PPUDATA read buffer (post-fetch)
3.9 OAM DMA ($4014) > write

4 References
5 Pattern tables
6 Addressing
7 OAM

7.1 Byte 0
7.2 Byte 1
7.3 Byte 2
7.4 Byte 3
7.5 DMA
7.6 Sprite zero hits
7.7 Sprite overlapping
7.8 Internal operation
7.9 Dynamic RAM decay

8 See also
9 References
10 Nametables
11 Mirroring
12 Background evaluation
13 Attribute tables
14 Worked example
15 Glitches
16 Palettes
17 Memory Map

18 Palettes
18.1 2C02
18.2 2C03 and 2C05
18.3 2C04

18.3.1 RP2C04-0001
18.3.2 RP2C04-0002
18.3.3 RP2C04-0003
18.3.4 RP2C04-0004

19 Backdrop color (palette index 0) uses
20 The background palette hack
21 Color names

21.1 Luma
21.2 Chroma
21.3 RGBI

22 Memory map
22.1 PPU memory map

23 Hardware mapping

PPU Registers
The PPU exposes eight memory-mapped registers to the CPU. These nominally sit at $2000 through $2007 in the
CPU's address space, but because they're incompletely decoded, they're mirrored in every 8 bytes from $2008
through $3FFF, so a write to $3456 is the same as a write to $2006.

Immediately after powerup, the PPU isn't necessarily in a usable state. The program needs to do a few things to get
it going; see PPU power up state and Init code.

Summary

Common
Name Address Bits Notes

PPUCTRL $2000 VPHB SINN
NMI enable (V), PPU master/slave (P), sprite height (H), background tile
select (B), sprite tile select (S), increment mode (I), nametable select
(NN)

PPUMASK $2001 BGRs bMmG
color emphasis (BGR), sprite enable (s), background enable (b), sprite
left column enable (M), background left column enable (m), greyscale
(G)

PPUSTATUS $2002 VSO- ----
vblank (V), sprite 0 hit (S), sprite overflow (O), read resets write pair for
$2005/2006

OAMADDR $2003 aaaa aaaa OAM read/write address
OAMDATA $2004 dddd dddd OAM data read/write

PPUSCROLL $2005 xxxx xxxx fine scroll position (two writes: X, Y)
PPUADDR $2006 aaaa aaaa PPU read/write address (two writes: MSB, LSB)
PPUDATA $2007 dddd dddd PPU data read/write
OAMDMA $4014 aaaa aaaa OAM DMA high address

https://wiki.nesdev.com/w/index.php/Mirroring
https://wiki.nesdev.com/w/index.php/PPU_power_up_state
https://wiki.nesdev.com/w/index.php/Init_code

Ports
The PPU has an internal data bus that it uses for communication with the CPU. This bus, called _io_db in Visual
2C02 and PPUGenLatch in FCEUX,[1] behaves as an 8-bit dynamic latch due to capacitance of very long traces that
run to various parts of the PPU. Writing any value to any PPU port, even to the nominally read-only PPUSTATUS,
will fill this latch. Reading any readable port (PPUSTATUS, OAMDATA, or PPUDATA) also fills the latch with the
bits read. Reading a nominally "write-only" register returns the latch's current value, as do the unused bits of
PPUSTATUS. This value begins to decay after a frame or so, faster once the PPU has warmed up, and it is likely
that values with alternating bit patterns (such as $55 or $AA) will decay faster.[2]

Controller ($2000) > write

Common name: PPUCTRL
Description: PPU control register
Access: write

Various flags controlling PPU operation

7 bit 0
---- ----
VPHB SINN
|||| ||||
|||| ||++- Base nametable address
|||| || (0 = $2000; 1 = $2400; 2 = $2800; 3 = $2C00)
|||| |+--- VRAM address increment per CPU read/write of PPUDATA
|||| | (0: add 1, going across; 1: add 32, going down)
|||| +---- Sprite pattern table address for 8x8 sprites
|||| (0: $0000; 1: $1000; ignored in 8x16 mode)
|||+------ Background pattern table address (0: $0000; 1: $1000)
||+------- Sprite size (0: 8x8; 1: 8x16)
|+-------- PPU master/slave select
| (0: read backdrop from EXT pins; 1: output color on EXT pins)
+--------- Generate an NMI at the start of the
 vertical blanking interval (0: off; 1: on)

Equivalently, bits 0 and 1 are the most significant bit of the scrolling coordinates (see Nametables and
PPUSCROLL):

7 bit 0
---- ----
.... ..YX
 ||
 |+- 1: Add 256 to the X scroll position
 +-- 1: Add 240 to the Y scroll position

Another way of seeing the explanation above is that when you reach the end of a nametable, you must switch to the
next one, hence, changing the nametable address.

After power/reset, writes to this register are ignored for about 30000 cycles.

When turning on the NMI flag in bit 7, if the PPU is currently in vertical blank and the PPUSTATUS ($2002)
vblank flag is set, an NMI will be generated immediately. This can result in graphical errors (most likely a
misplaced scroll) if the NMI routine is executed too late in the blanking period to finish on time. To avoid this
problem it is prudent to read $2002 immediately before writing $2000 to clear the vblank flag.

For more explanation of sprite size, see: Sprite size

https://wiki.nesdev.com/w/index.php/Visual_2C02
https://wiki.nesdev.com/w/index.php/NMI
https://en.wikipedia.org/wiki/Vertical_blanking_interval
https://wiki.nesdev.com/w/index.php/PPU_nametables
https://wiki.nesdev.com/w/index.php/PPU_power_up_state
https://wiki.nesdev.com/w/index.php/Sprite_size

Master/slave mode and the EXT pins

When bit 6 of PPUCTRL is clear (the usual case), the PPU gets the palette index for the background color from the
EXT pins. The stock NES grounds these pins, making palette index 0 the background color as expected. A
secondary picture generator connected to the EXT pins would be able to replace the background with a different
image using colors from the background palette, which could be used e.g. to implement parallax scrolling.

Setting bit 6 causes the PPU to output the lower four bits of the palette memory index on the EXT pins for each
pixel (in addition to normal image drawing) - since only four bits are output, background and sprite pixels can't
normally be distinguished this way. As the EXT pins are grounded on an unmodified NES, setting bit 6 is
discouraged as it could potentially damage the chip whenever it outputs a non-zero pixel value (due to it effectively
shorting Vcc and GND together). Looking at the relevant circuitry in Visual 2C02, it appears that the background
palette hack would not be functional for output from the EXT pins; they would always output index 0 for the
background color.

Bit 0 bus conflict

Be very careful when writing to this register outside vertical blanking if you are using vertical mirroring (horizontal
arrangement) or 4-screen VRAM. For specific CPU-PPU alignments, a write near the end of a visible scanline
(http://forums.nesdev.com/viewtopic.php?p=112424#p112424) may cause only the next scanline to be erroneously
drawn from the left nametable. This can cause a visible glitch. Worse, it can theoretically cause a sprite 0 hit to fail,
which may crash a game using a sprite 0 spin loop that's not resilient.

Only writes at the exact moment between active picture and horizontal blanking cause this glitch; well-timed mid-
scanline writes do not, nor do writes that land well within horizontal blanking. The glitch has no effect in horizontal
or one-screen mirroring. It also does not appear if bit 0 of the written value is 0; this always correctly sets the left
nametable.

This produces an occasionally visible glitch in Super Mario Bros. when the program writes to PPUCTRL at the end
of game logic. It appears to be turning NMI off during game logic and then turning NMI back on once the game
logic has finished in order to prevent the NMI handler from being called again before the game logic finishes. To
work around this in new productions, have your game logic set a flag that your NMI handler checks.

Mask ($2001) > write

Common name: PPUMASK
Description: PPU mask register
Access: write

This register controls the rendering of sprites and backgrounds, as well as colour effects.

7 bit 0
---- ----
BGRs bMmG
|||| ||||
|||| |||+- Greyscale (0: normal color, 1: produce a greyscale display)
|||| ||+-- 1: Show background in leftmost 8 pixels of screen, 0: Hide
|||| |+--- 1: Show sprites in leftmost 8 pixels of screen, 0: Hide
|||| +---- 1: Show background
|||+------ 1: Show sprites
||+------- Emphasize red*
|+-------- Emphasize green*
+--------- Emphasize blue*

https://wiki.nesdev.com/w/index.php/PPU_palettes
https://wiki.nesdev.com/w/index.php/Visual_2C02
https://wiki.nesdev.com/w/index.php/PPU_palettes
http://forums.nesdev.com/viewtopic.php?p=112424#p112424
https://wiki.nesdev.com/w/index.php/Game_bugs

* NTSC colors. PAL and Dendy swaps green and red[3][4].

Render Control

Bits 3 and 4 enable the rendering of background and sprites, respectively.

Bits 1 and 2 enable rendering of the background and sprites in the leftmost 8 pixel columns. Setting these bits
to 0 will mask these columns, which is often useful in horizontal scrolling situations where you want partial
sprites or tiles to scroll in from the left.

A value of $1E enables all rendering, with no color effects. A value of $00 disables all rendering. It is usually
best practice to write this register only during vblank, to prevent partial-frame visual artifacts.

If either of bits 3 or 4 is enabled, at any time outside of the vblank interval the PPU will be making continual
use to the PPU address and data bus to fetch tiles to render, as well as internally fetching sprite data from the
OAM. If you wish to make changes to PPU memory outside of vblank (via $2007), you must set both of
these bits to 0 to disable rendering and prevent conflicts.

Disabling rendering (clear both bits 3 and 4) during a visible part of the frame can be problematic. It can
cause a corruption of the sprite state, which will display incorrect sprite data on the next frame. (See: Errata)
It is, however, perfectly fine to mask sprites but leave the background on (set bit 3, clear bit 4) at any time in
the frame.

Sprite 0 hit does not trigger in any area where the background or sprites are hidden.

Color Control

Bit 0 controls a greyscale mode, which causes the palette to use only the colors from the grey column: $00,
$10, $20, $30. This is implemented as a bitwise AND with $30 on any value read from PPU $3F00-$3FFF,
both on the display and through PPUDATA. Writes to the palette through PPUDATA are not affected. Also
note that black colours like $0F will be replaced by a non-black grey $00.

Bits 5,6,7 control a color "emphasis" or "tint" effect. Each bit emphasizes 1 color while darkening the other
two. Setting all three emphasis bits will darken colors $00-$0D, $10-$1D, $20-$2D, and $30-$3D.

Bit 5 emphasizes red on the NTSC PPU, and green on the PAL & Dendy PPUs.
Bit 6 emphasizes green on the NTSC PPU, and red on the PAL & Dendy PPUs.
Bit 7 emphasizes blue on the NTSC, PAL, & Dendy PPUs.
See NTSC video for a description of how bits 5-7 work on NTSC and PAL PPUs.
The RGB PPU used by PlayChoice and some other systems treat the emphasis bits differently. Instead
of darkening other RGB components, it forces one component to maximum brightness. A few games,
which set all three tint bits to darken all colors, are unplayable on these PPUs.

The emphasis bits are applied independently of greyscale, so they will still tint the color of the grey image.

Status ($2002) < read

Common name: PPUSTATUS
Description: PPU status register
Access: read

This register reflects the state of various functions inside the PPU. It is often used for determining timing. To
determine when the PPU has reached a given pixel of the screen, put an opaque pixel of sprite 0 there.

https://wiki.nesdev.com/w/index.php/Errata
https://wiki.nesdev.com/w/index.php/NTSC_video
https://wiki.nesdev.com/w/index.php/Vs._System
https://wiki.nesdev.com/w/index.php/Colour-emphasis_games

7 bit 0
---- ----
VSO.
|||| ||||
|||+-++++- Least significant bits previously written into a PPU register
||| (due to register not being updated for this address)
||+------- Sprite overflow. The intent was for this flag to be set
|| whenever more than eight sprites appear on a scanline, but a
|| hardware bug causes the actual behavior to be more complicated
|| and generate false positives as well as false negatives; see
|| PPU sprite evaluation. This flag is set during sprite
|| evaluation and cleared at dot 1 (the second dot) of the
|| pre-render line.
|+-------- Sprite 0 Hit. Set when a nonzero pixel of sprite 0 overlaps
| a nonzero background pixel; cleared at dot 1 of the pre-render
| line. Used for raster timing.
+--------- Vertical blank has started (0: not in vblank; 1: in vblank).
 Set at dot 1 of line 241 (the line *after* the post-render
 line); cleared after reading $2002 and at dot 1 of the
 pre-render line.

Notes

Reading the status register will clear D7 mentioned above and also the address latch used by PPUSCROLL
and PPUADDR. It does not clear the sprite 0 hit or overflow bit.
Once the sprite 0 hit flag is set, it will not be cleared until the end of the next vertical blank. If attempting to
use this flag for raster timing, it is important to ensure that the sprite 0 hit check happens outside of vertical
blank, otherwise the CPU will "leak" through and the check will fail. The easiest way to do this is to place an
earlier check for D6 = 0, which will wait for the pre-render scanline to begin.
If using sprite 0 hit to make a bottom scroll bar below a vertically scrolling or freely scrolling playfield, be
careful to ensure that the tile in the playfield behind sprite 0 is opaque.
Sprite 0 hit is not detected at x=255, nor is it detected at x=0 through 7 if the background or sprites are
hidden in this area.
See: PPU rendering for more information on the timing of setting and clearing the flags.
Some Vs. System PPUs return a constant value in D4-D0 that the game checks.
Caution: Reading PPUSTATUS at the exact start of vertical blank will return 0 in bit 7 but clear the latch
anyway, causing the program to miss frames. See NMI for details.

OAM address ($2003) > write

Common name: OAMADDR
Description: OAM address port
Access: write

Write the address of OAM you want to access here. Most games just write $00 here and then use OAMDMA.
(DMA is implemented in the 2A03/7 chip and works by repeatedly writing to OAMDATA)

Values during rendering

OAMADDR is set to 0 during each of ticks 257-320 (the sprite tile loading interval) of the pre-render and visible
scanlines.

The value of OAMADDR when sprite evaluation starts at tick 65 of the visible scanlines will determine where in
OAM sprite evaluation starts, and hence which sprite gets treated as sprite 0. The first OAM entry to be checked
during sprite evaluation is the one starting at OAM[OAMADDR]. If OAMADDR is unaligned and does not point to the

https://wiki.nesdev.com/w/index.php/PPU_sprite_evaluation
https://wiki.nesdev.com/w/index.php/PPU_rendering
https://wiki.nesdev.com/w/index.php/Vs._System
https://wiki.nesdev.com/w/index.php/NMI
https://wiki.nesdev.com/w/index.php/PPU_OAM

y position (first byte) of an OAM entry, then whatever it points to (tile index, attribute, or x coordinate) will be
reinterpreted as a y position, and the following bytes will be similarly reinterpreted. No more sprites will be found
once the end of OAM is reached, effectively hiding any sprites before OAM[OAMADDR].

OAMADDR precautions

On the 2C02G, writes to OAMADDR reliably corrupt OAM.[5] This can then be worked around by writing all 256
bytes of OAM.

It is also the case that if OAMADDR is not less than eight when rendering starts, the eight bytes starting at OAMADDR
& 0xF8 are copied to the first eight bytes of OAM; it seems likely that this is related. On the Dendy, the latter bug is
required for 2C02 compatibility.

It is known that in the 2C03, 2C04, 2C05[6], and 2C07, OAMADDR works as intended. It is not known whether
this bug is present in all revisions of the 2C02.

OAM data ($2004) <> read/write

Common name: OAMDATA
Description: OAM data port
Access: read, write

Write OAM data here. Writes will increment OAMADDR after the write; reads during vertical or forced blanking
return the value from OAM at that address but do not increment.

Because changes to OAM should normally be made only during vblank, writing through OAMDATA is only
effective for partial updates (it is too slow). Most games will use the DMA feature through OAMDMA instead.

Reading OAMDATA while the PPU is rendering will expose internal OAM accesses during sprite evaluation
and loading; Micro Machines does this.

Writes to OAMDATA during rendering (on the pre-render line and the visible lines 0-239, provided either
sprite or background rendering is enabled) do not modify values in OAM, but do perform a glitchy increment
of OAMADDR, bumping only the high 6 bits (i.e., it bumps the [n] value in PPU sprite evaluation - it's
plausible that it could bump the low bits instead depending on the current status of sprite evaluation). This
extends to DMA transfers via OAMDMA, since that uses writes to $2004. For emulation purposes, it is
probably best to completely ignore writes during rendering.

It used to be thought that reading from this register wasn't reliable[7], however more recent evidence seems to
suggest that this is solely due to corruption by OAMADDR writes.

In the oldest instantiations of the PPU, as found on earlier Famicoms and NESes, this register is not
readable[8]. The readability was added on the RP2C02G, found on most NESes and later Famicoms.[9]

In the 2C07, sprite evaluation can never be fully disabled, and will always start 20 scanlines after the start of
vblank[10] (same as when the prerender scanline would have been on the 2C02). As such, you must upload
anything to OAM that you intend to within the first 20 scanlines after the 2C07 signals vertical blanking.

Scroll ($2005) >> write x2

Common name: PPUSCROLL
Description: PPU scrolling position register

https://wiki.nesdev.com/w/index.php/PPU_sprite_evaluation

Access: write twice

This register is used to change the scroll position, that is, to tell the PPU which pixel of the nametable selected
through PPUCTRL should be at the top left corner of the rendered screen. Typically, this register is written to
during vertical blanking, so that the next frame starts rendering from the desired location, but it can also be
modified during rendering in order to split the screen. Changes made to the vertical scroll during rendering will
only take effect on the next frame.

After reading PPUSTATUS to reset the address latch, write the horizontal and vertical scroll offsets here just before
turning on the screen:

 bit PPUSTATUS
 ; possibly other code goes here
 lda cam_position_x
 sta PPUSCROLL
 lda cam_position_y
 sta PPUSCROLL

Horizontal offsets range from 0 to 255. "Normal" vertical offsets range from 0 to 239, while values of 240 to 255
are treated as -16 through -1 in a way, but tile data is incorrectly fetched from the attribute table.

By changing the values here across several frames and writing tiles to newly revealed areas of the nametables, one
can achieve the effect of a camera panning over a large background.

Address ($2006) >> write x2

Common name: PPUADDR
Description: PPU address register
Access: write twice

Because the CPU and the PPU are on separate buses, neither has direct access to the other's memory. The CPU
writes to VRAM through a pair of registers on the PPU. First it loads an address into PPUADDR, and then it writes
repeatedly to PPUDATA to fill VRAM.

After reading PPUSTATUS to reset the address latch, write the 16-bit address of VRAM you want to access here,
upper byte first. For example, to set the VRAM address to $2108:

 lda #$21
 sta PPUADDR
 lda #$08
 sta PPUADDR

Valid addresses are $0000-$3FFF; higher addresses will be mirrored down.

note

Access to PPUSCROLL and PPUADDR during screen refresh produces interesting raster effects; the starting
position of each scanline can be set to any pixel position in nametable memory. For more information, see PPU
scrolling and tokumaru's sample code on the BBS.[11]

Editor's note: Last comment about external page should be re-directed to the getting started section instead.

Data ($2007) <> read/write

https://wiki.nesdev.com/w/index.php/PPU_scrolling
https://wiki.nesdev.com/w/index.php/Mirroring
https://wiki.nesdev.com/w/index.php/PPU_scrolling

Common name: PPUDATA
Description: PPU data port
Access: read, write

VRAM read/write data register. After access, the video memory address will increment by an amount determined
by $2000:2.

When the screen is turned off by disabling the background/sprite rendering flag with the PPUMASK or during
vertical blank, you can read or write data from VRAM through this port. Since accessing this register increments
the VRAM address, it should not be accessed outside vertical or forced blanking because it will cause graphical
glitches, and if writing, write to an unpredictable address in VRAM. However, two games are known to read from
PPUDATA during rendering: see Tricky-to-emulate games.

VRAM reading and writing shares the same internal address register that rendering uses. So after loading data into
video memory, the program should reload the scroll position afterwards with PPUSCROLL writes in order to avoid
wrong scrolling.

The PPUDATA read buffer (post-fetch)

When reading while the VRAM address is in the range 0-$3EFF (i.e., before the palettes), the read will return the
contents of an internal read buffer. This internal buffer is updated only when reading PPUDATA, and so is
preserved across frames. After the CPU reads and gets the contents of the internal buffer, the PPU will immediately
update the internal buffer with the byte at the current VRAM address. Thus, after setting the VRAM address, one
should first read this register and discard the result.

Reading palette data from $3F00-$3FFF works differently. The palette data is placed immediately on the data bus,
and hence no dummy read is required. Reading the palettes still updates the internal buffer though, but the data
placed in it is the mirrored nametable data that would appear "underneath" the palette. (Checking the PPU memory
map should make this clearer.)

OAM DMA ($4014) > write

Common name: OAMDMA
Description: OAM DMA register (high byte)
Access: write

This port is located on the CPU. Writing $XX will upload 256 bytes of data from CPU page $XX00-$XXFF to the
internal PPU OAM. This page is typically located in internal RAM, commonly $0200-$02FF, but cartridge RAM
or ROM can be used as well.

The CPU is suspended during the transfer, which will take 513 or 514 cycles after the $4014 write tick. (1
dummy read cycle while waiting for writes to complete, +1 if on an odd CPU cycle, then 256 alternating
read/write cycles.)

The OAM DMA is the only effective method for initializing all 256 bytes of OAM. Because of the decay of
OAM's dynamic RAM when rendering is disabled, the initialization should take place within vblank. Writes
through OAMDATA are generally too slow for this task.

The DMA transfer will begin at the current OAM write address. It is common practice to initialize it to 0
with a write to OAMADDR before the DMA transfer. Different starting addresses can be used for a simple
OAM cycling technique, to alleviate sprite priority conflicts by flickering. If using this technique, after the
DMA OAMADDR should be set to 0 before the end of vblank to prevent potential OAM corruption (See:

https://wiki.nesdev.com/w/index.php/Reading_2007_during_rendering
https://wiki.nesdev.com/w/index.php/Tricky-to-emulate_games
https://wiki.nesdev.com/w/index.php/PPU_memory_map

Errata). However, due to OAMADDR writes also having a "corruption" effect[5] this technique is not
recommended.

References
1. ↑ ppu.cpp (http://sourceforge.net/p/fceultra/code/HEAD/tree/fceu/trunk/src/ppu.cpp#l183) by Bero and

Xodnizel
2. ↑ Reply to "Riding the open bus" (http://forums.nesdev.com/viewtopic.php?p=143801#p143801) by lidnariq
3. ↑ PAL PPU swaps green and red emphasis bits: http://forums.nesdev.com/viewtopic.php?p=131889#p13188
4. ↑ Dendy PPU swaps green and red emphasis bits: http://forums.nesdev.com/viewtopic.php?

p=155513#p155513
5. ↑ 5.0 5.1 Manual OAM write glitchyness: http://forums.nesdev.com/viewtopic.php?f=2&t=10189
6. ↑ Writes to $2003 appear to not cause OAM corruption: https://forums.nesdev.com/viewtopic.php?

p=179676#p179676
7. ↑ $2004 reading reliable? http://forums.nesdev.com/viewtopic.php?f=2&t=6424
8. ↑ $2003 not readable on early revisions: http://forums.nesdev.com/viewtopic.php?p=62137#p62137
9. ↑ hardware revisions and $2003 reads: http://forums.nesdev.com/viewtopic.php?

f=2&t=12958&start=45#p150926
10. ↑ 2C07 PPU sprite evaluation notes: http://forums.nesdev.com/viewtopic.php?f=9&t=11041
11. ↑ PPU synchronization from NMI: http://forums.nesdev.com/viewtopic.php?p=64111#p64111

Pattern tables
The pattern table is an area of memory connected to the PPU that defines the shapes of tiles that make up
backgrounds and sprites. Each tile in the pattern table is 16 bytes, made of two planes. The first plane controls bit 0
of the color; the second plane controls bit 1. Any pixel whose color is 0 is background/transparent (represented by
'.' in the following diagram):

Bit Planes Pixel Pattern
$0xx0=$41 01000001
$0xx1=$C2 11000010
$0xx2=$44 01000100
$0xx3=$48 01001000
$0xx4=$10 00010000
$0xx5=$20 00100000 .1.....3
$0xx6=$40 01000000 11....3.
$0xx7=$80 10000000 ===== .1...3..
 .1..3...
$0xx8=$01 00000001 ===== ...3.22.
$0xx9=$02 00000010 ..3....2
$0xxA=$04 00000100 .3....2.
$0xxB=$08 00001000 3....222
$0xxC=$16 00010110
$0xxD=$21 00100001
$0xxE=$42 01000010
$0xxF=$87 10000111

The pattern table is divided into two 256-tile sections: $0000-$0FFF, nicknamed "left", and $1000-$1FFF,
nicknamed "right". The nicknames come from how emulators with a debugger display the pattern table.
Traditionally, they are displayed as two side-by-side 128x128 pixel sections, each representing 16x16 tiles from the
pattern table, with $0000-$0FFF on the left and $1000-$1FFF on the right.

An important aspect of a mapper's capability is how finely it allows bank switching parts of the pattern table.

https://wiki.nesdev.com/w/index.php/Errata
http://sourceforge.net/p/fceultra/code/HEAD/tree/fceu/trunk/src/ppu.cpp#l183
http://forums.nesdev.com/viewtopic.php?p=143801#p143801
http://forums.nesdev.com/viewtopic.php?p=131889#p13188
http://forums.nesdev.com/viewtopic.php?p=155513#p155513
http://forums.nesdev.com/viewtopic.php?f=2&t=10189
https://forums.nesdev.com/viewtopic.php?p=179676#p179676
http://forums.nesdev.com/viewtopic.php?f=2&t=6424
http://forums.nesdev.com/viewtopic.php?p=62137#p62137
http://forums.nesdev.com/viewtopic.php?f=2&t=12958&start=45#p150926
http://forums.nesdev.com/viewtopic.php?f=9&t=11041
http://forums.nesdev.com/viewtopic.php?p=64111#p64111
https://wiki.nesdev.com/w/index.php/Mapper

Addressing
PPU addresses within the pattern tables can be decoded as follows:

DCBA98 76543210

0HRRRR CCCCPTTT
|||||| |||||+++- T: Fine Y offset, the row number within a tile
|||||| ||||+---- P: Bit plane (0: "lower"; 1: "upper")
|||||| ++++----- C: Tile column
||++++---------- R: Tile row
|+-------------- H: Half of sprite table (0: "left"; 1: "right")
+--------------- 0: Pattern table is at $0000-$1FFF

The value written to PPUCTRL ($2000) controls whether the background and sprites use the left half
($0000-$0FFF) or the right half ($1000-$1FFF) of the pattern table. PPUCTRL bit 4 applies to backgrounds, bit 3
applies to 8x8 sprites, and bit 0 of each OAM entry's tile number applies to 8x16 sprites.

For example, if rows of a tile are numbered 0 through 7, row 1 of tile $69 in the left pattern table is stored with
plane 0 in $0691 and plane 1 in $0699.

OAM
The OAM (Object Attribute Memory) is internal memory inside the PPU that contains a display list of up to 64
sprites, where each sprite's information occupies 4 bytes.

Byte 0

Y position of top of sprite

Sprite data is delayed by one scanline; you must subtract 1 from the sprite's Y coordinate before writing it here.
Hide a sprite by writing any values in $EF-$FF here. Sprites are never displayed on the first line of the picture, and
it is impossible to place a sprite partially off the top of the screen.

Byte 1

Tile index number

For 8x8 sprites, this is the tile number of this sprite within the pattern table selected in bit 3 of PPUCTRL ($2000).

For 8x16 sprites, the PPU ignores the pattern table selection and selects a pattern table from bit 0 of this number.

76543210
||||||||
|||||||+- Bank ($0000 or $1000) of tiles
+++++++-- Tile number of top of sprite (0 to 254; bottom half gets the next tile)

Thus, the pattern table memory map for 8x16 sprites looks like this:

$00: $0000-$001F
$01: $1000-$101F

https://wiki.nesdev.com/w/index.php/PPUCTRL
https://wiki.nesdev.com/w/index.php/PPUCTRL

$02: $0020-$003F
$03: $1020-$103F
$04: $0040-$005F
[...]
$FE: $0FE0-$0FFF
$FF: $1FE0-$1FFF

Byte 2

Attributes

76543210
||||||||
||||||++- Palette (4 to 7) of sprite
|||+++--- Unimplemented
||+------ Priority (0: in front of background; 1: behind background)
|+------- Flip sprite horizontally
+-------- Flip sprite vertically

Flipping does not change the position of the sprite's bounding box, just the position of pixels within the sprite. If,
for example, a sprite covers (120, 130) through (127, 137), it'll still cover the same area when flipped. In 8x16
mode, vertical flip flips each of the subtiles and also exchanges their position; the odd-numbered tile of a vertically
flipped sprite is drawn on top. This behavior differs from the behavior of the unofficial 16x32 and 32x64 pixel
sprite sizes on the Super NES
(http://wiki.superfamicom.org/snes/show/Registers#obsel__object_size_and_character_address_8), which will only
vertically flip each square sub-region (http://wiki.superfamicom.org/snes/show/Sprites).

The three unimplemented bits of each sprite's byte 2 do not exist in the PPU and always read back as 0 on PPU
revisions that allow reading PPU OAM through OAMDATA ($2004). This can be emulated by ANDing byte 2
with $E3 either when writing to or when reading from OAM. It has not been determined whether the PPU actually
drives these bits low or whether this is the effect of data bus capacitance from reading the last byte of the
instruction (LDA $2004, which assembles to AD 04 20).

Byte 3

X position of left side of sprite.

X-scroll values of $F9-FF results in parts of the sprite to be past the right edge of the screen, thus invisible. It is not
possible to have a sprite partially visible on the left edge. Instead, left-clipping through PPUMASK ($2001) can be
used to simulate this effect.

DMA

Most programs write to a copy of OAM somewhere in CPU addressable RAM (often $0200-$02FF) and then copy
it to OAM each frame using the OAMDMA ($4014) register. Writing N to this register causes the DMA circuitry
inside the 2A03/07 to fully initialize the OAM by writing OAMDATA 256 times using successive bytes from
starting at address $100*N). The CPU is suspended while the transfer is taking place.

The address range to copy from could lie outside RAM, though this is only useful for static screens with no
animation.

http://wiki.superfamicom.org/snes/show/Registers#obsel__object_size_and_character_address_8
http://wiki.superfamicom.org/snes/show/Sprites
https://wiki.nesdev.com/w/index.php/OAMDATA
https://wiki.nesdev.com/w/index.php/PPUMASK
https://wiki.nesdev.com/w/index.php/OAMDMA
https://wiki.nesdev.com/w/index.php/OAMDATA

Not counting the OAMDMA write tick, the above procedure takes 513 CPU cycles (+1 on odd CPU cycles): first
one (or two) idle cycles, and then 256 pairs of alternating read/write cycles. (For comparison, an unrolled
LDA/STA loop would usually take four times as long.)

Sprite zero hits

Sprites are conventionally numbered 0 to 63. Sprite 0 is the sprite controlled by OAM addresses $00-$03, sprite 1
is controlled by $04-$07, ..., and sprite 63 is controlled by $FC-$FF.

While the PPU is drawing the picture, when an opaque pixel of sprite 0 overlaps an opaque pixel of the
background, this is a sprite zero hit. The PPU detects this condition and sets bit 6 of PPUSTATUS ($2002) to 1
starting at this pixel, letting the CPU know how far along the PPU is in drawing the picture.

Sprite 0 hit does not happen:

If background or sprite rendering is disabled in PPUMASK ($2001)
At x=0 to x=7 if the left-side clipping window is enabled (if bit 2 or bit 1 of PPUMASK is 0).
At x=255, for an obscure reason related to the pixel pipeline.
At any pixel where the background or sprite pixel is transparent (2-bit color index from the CHR pattern
is %00).
If sprite 0 hit has already occurred this frame. Bit 6 of PPUSTATUS ($2002) is cleared to 0 at dot 1 of the
pre-render line. This means only the first sprite 0 hit in a frame can be detected.

Sprite 0 hit happens regardless of the following:

Sprite priority. Sprite 0 can still hit the background from behind.
The pixel colors. Only the CHR pattern bits are relevant, not the actual rendered colors, and any CHR color
index except %00 is considered opaque.
The palette. The contents of the palette are irrelevant to sprite 0 hits. For example: a black ($0F) sprite pixel
can hit a black ($0F) background as long as neither is the transparent color index %00.
The PAL PPU blanking on the left and right edges at x=0, x=1, and x=254 (see Overscan).

Sprite overlapping

Priority between sprites is determined by their address inside OAM. So to have a sprite displayed in front of
another sprite in a scanline, the sprite data that occurs first will overlap any other sprites after it. For example, when
sprites at OAM $0C and $28 overlap, the sprite at $0C will appear in front.

Internal operation

In addition to the primary OAM memory, the PPU contains 32 bytes (enough for 8 sprites) of secondary OAM
memory that is not directly accessible by the program. During each visible scanline this secondary OAM is first
cleared, and then a linear search of the entire primary OAM is carried out to find sprites that are within y range for
the next scanline (the sprite evaluation phase). The OAM data for each sprite found to be within range is copied
into the secondary OAM, which is then used to initialize eight internal sprite output units.

See PPU rendering for information on precise timing.

The reason sprites at lower addresses in OAM overlap sprites at higher addresses is that sprites at lower addresses
also get assigned a lower address in the secondary OAM, and hence get assigned a lower-numbered sprite output
unit during the loading phase. Output from lower-numbered sprite output units is wired inside the PPU to take
priority over output from higher-numbered sprite output units.

https://wiki.nesdev.com/w/index.php/OAMDMA
https://wiki.nesdev.com/w/index.php/PPUSTATUS
https://wiki.nesdev.com/w/index.php/PPUMASK
https://wiki.nesdev.com/w/index.php/Overscan#PAL
https://wiki.nesdev.com/w/index.php/PPU_sprite_priority
https://wiki.nesdev.com/w/index.php/PPU_rendering

Sprite zero hit detection relies on the fact that sprite zero, when it is within y range for the next scanline, always
gets assigned the first sprite output unit. The hit condition is basically sprite zero is in range AND the first sprite
output unit is outputting a non-zero pixel AND the background drawing unit is outputting a non-zero pixel.
(Internally the PPU actually uses two flags: one to keep track of whether sprite zero occurs on the next scanline,
and another one—initialized from the first—to keep track of whether sprite zero occurs on the current scanline.
This is to avoid sprite evaluation, which takes place concurrently with potential sprite zero hits, trampling on the
second flag.)

Dynamic RAM decay

Because OAM is implemented with dynamic RAM instead of static RAM, the data stored in OAM memory will
quickly begin to decay into random bits if it is not being refreshed. The OAM memory is refreshed once per
scanline while rendering is enabled (if either the sprite or background bit is enabled via the register at $2001), but
on an NTSC PPU this refresh is prevented whenever rendering is disabled.

When rendering is turned off, or during vertical blanking between frames, the OAM memory will hold stable
values for a short period before it begins to decay. It will last at least as long as an NTSC vertical blank interval
(~1.3ms), but not much longer than this.[1] Because of this, it is not normally useful to write to OAM outside of
vertical blank, where rendering is expected to start refreshing its data soon after the write. Writes to $4014 or $2004
should usually be done in an NMI routine, or otherwise within vertical blanking.

On a PAL machine, because of its extended vertical blank, the PPU begins refreshing OAM roughly 21 scanlines
after NMI[2], to prevent it from decaying during the longer hiatus of rendering. Additionally, it will continue to
refresh during the visible portion of the screen even if rendering is disabled. Because of this, OAM DMA must be
done near the beginning of vertical blank on PAL, and everywhere else it is liable to conflict with the refresh. Since
the refresh can't be disabled like on the NTSC hardware, OAM decay does not occur at all on the PAL NES.

If using an advanced technique like forced blanking to manually extend the vertical blank time, it may be necessary
to do the OAM DMA last, before enabling rendering mid-frame, to avoid decay.

Because OAM decay is more or less random, and with timing that is sensitive to temperature or other
environmental factors, it not something a game could normally rely on. Most emulators do not simulate the decay,
and suffer no compatibility problems as a result. Software developers targeting the NES hardware should be careful
not to rely on this.

See also
PPU sprite evaluation
PPU sprite priority
Sprite overflow games

References
1. ↑ Forum post: (http://forums.nesdev.com/viewtopic.php?p=109548#p109548) Re: Just how cranky is the

PPU OAM?
2. ↑ Forum post: (http://forums.nesdev.com/viewtopic.php?f=9&t=11041) OAM reading on PAL NES

Nametables

https://wiki.nesdev.com/w/index.php/PPUMASK
https://wiki.nesdev.com/w/index.php/OAMDMA
https://wiki.nesdev.com/w/index.php/OAMDATA
https://wiki.nesdev.com/w/index.php/PPU_sprite_evaluation
https://wiki.nesdev.com/w/index.php/PPU_sprite_priority
https://wiki.nesdev.com/w/index.php/Sprite_overflow_games
http://forums.nesdev.com/viewtopic.php?p=109548#p109548
http://forums.nesdev.com/viewtopic.php?f=9&t=11041

 (0,0) (256,0) (511,0)
 +-----------+-----------+
 | | |
 | | |
 | $2000 | $2400 |
 | | |
 | | |
(0,240)+-----------+-----------+(511,240)
 | | |
 | | |
 | $2800 | $2C00 |
 | | |
 | | |
 +-----------+-----------+
 (0,479) (256,479) (511,479)

A nametable is a 1024 byte area of memory used by the PPU to lay out backgrounds. Each byte in the nametable
controls one 8x8 pixel character cell, and each nametable has 30 rows of 32 tiles each, for 960 ($3C0) bytes; the
rest is used by each nametable's attribute table. With each tile being 8x8 pixels, this makes a total of 256x240 pixels
in one map, the same size as one full screen.

See also: PPU memory map

Mirroring
Main article: Mirroring

The NES has four nametables, arranged in a 2x2 pattern. Each occupies
a 1 KiB chunk of PPU address space, starting at $2000 at the top left,
$2400 at the top right, $2800 at the bottom left, and $2C00 at the
bottom right.

But the NES system board itself has only 2 KiB of VRAM (called
CIRAM, stored in a separate SRAM chip), enough for two nametables;
hardware on the cartridge controls address bit 10 of CIRAM to map one nametable on top of another.

Vertical mirroring: $2000 equals $2800 and $2400 equals $2C00 (e.g. Super Mario Bros.)
Horizontal mirroring: $2000 equals $2400 and $2800 equals $2C00 (e.g. Kid Icarus)
One-screen mirroring: All nametables refer to the same memory at any given time, and the mapper directly
manipulates CIRAM address bit 10 (e.g. many Rare games using AxROM)
Four-screen mirroring: CIRAM is disabled, and the cartridge contains additional VRAM used for all
nametables (e.g. Gauntlet, Rad Racer 2)
Other: Some advanced mappers can present arbitrary combinations of CIRAM, VRAM, or even CHR ROM
in the nametable area. Such exotic setups are rarely used.

Background evaluation
Main article: PPU rendering

Conceptually, the PPU does this 33 times for each scanline:

1. Fetch a nametable entry from $2000-$2FBF.
2. Fetch the corresponding attribute table entry from $23C0-$2FFF and increment the current VRAM address

within the same row.
3. Fetch the low-order byte of an 8x1 pixel sliver of pattern table from $0000-$0FF7 or $1000-$1FF7.
4. Fetch the high-order byte of this sliver from an address 8 bytes higher.
5. Turn the attribute data and the pattern table data into palette indices, and combine them with data from sprite

data using priority.

It also does a fetch of a 34th (nametable, attribute, pattern) tuple that is never used, but some mappers rely on this
fetch for timing purposes.

Attribute tables
The attribute table is a 64-byte array at the end of each nametable that controls which palette is assigned to each
part of the background.

https://wiki.nesdev.com/w/index.php/PPU_attribute_tables
https://wiki.nesdev.com/w/index.php/PPU_memory_map
https://wiki.nesdev.com/w/index.php/Mirroring
https://wiki.nesdev.com/w/index.php/Rare
https://wiki.nesdev.com/w/index.php/AxROM
https://wiki.nesdev.com/w/index.php/PPU_rendering
https://wiki.nesdev.com/w/index.php/PPU_sprite_evaluation
https://wiki.nesdev.com/w/index.php/PPU_sprite_priority
https://wiki.nesdev.com/w/index.php/Mapper
https://wiki.nesdev.com/w/index.php/PPU_nametables

,---+---+---+---.
| | | | |
+ D1-D0 + D3-D2 +
| | | | |
+---+---+---+---+
| | | | |
+ D5-D4 + D7-D6 +
| | | | |
`---+---+---+---'

Each attribute table, starting at $23C0, $27C0, $2BC0, or $2FC0, is arranged as an 8x8 byte array:

 2xx0 2xx1 2xx2 2xx3 2xx4 2xx5 2xx6 2xx7
 ,-------+-------+-------+-------+-------+-------+-------+-------.
 | . | . | . | . | . | . | . | . |
2xC0:| - + - | - + - | - + - | - + - | - + - | - + - | - + - | - + - |
 | . | . | . | . | . | . | . | . |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | . | . | . | . | . | . | . | . |
2xC8:| - + - | - + - | - + - | - + - | - + - | - + - | - + - | - + - |
 | . | . | . | . | . | . | . | . |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | . | . | . | . | . | . | . | . |
2xD0:| - + - | - + - | - + - | - + - | - + - | - + - | - + - | - + - |
 | . | . | . | . | . | . | . | . |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | . | . | . | . | . | . | . | . |
2xD8:| - + - | - + - | - + - | - + - | - + - | - + - | - + - | - + - |
 | . | . | . | . | . | . | . | . |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | . | . | . | . | . | . | . | . |
2xE0:| - + - | - + - | - + - | - + - | - + - | - + - | - + - | - + - |
 | . | . | . | . | . | . | . | . |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | . | . | . | . | . | . | . | . |
2xE8:| - + - | - + - | - + - | - + - | - + - | - + - | - + - | - + - |
 | . | . | . | . | . | . | . | . |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | . | . | . | . | . | . | . | . |
2xF0:| - + - | - + - | - + - | - + - | - + - | - + - | - + - | - + - |
 | . | . | . | . | . | . | . | . |
 +-------+-------+-------+-------+-------+-------+-------+-------+
2xF8:| . | . | . | . | . | . | . | . |
 `-------+-------+-------+-------+-------+-------+-------+-------'

Each byte controls the palette of a 32×32 pixel or 4×4 tile part of the nametable and is divided
into four 2-bit areas. Each area covers 16×16 pixels or 2×2 tiles, the size of a [?] block in Super
Mario Bros. Given palette numbers topleft, topright, bottomleft, bottomright, each in the range 0
to 3, the value of the byte is

value = (topleft << 0) | (topright << 2) | (bottomleft << 4) | (bottomright << 6)

Or equivalently:

7654 3210
|||| ||++- Color bits 3-2 for top left quadrant of this byte
|||| ++--- Color bits 3-2 for top right quadrant of this byte
||++------ Color bits 3-2 for bottom left quadrant of this byte
++-------- Color bits 3-2 for bottom right quadrant of this byte

Most games for the NES use 16×16 pixel metatiles (size of Super Mario Bros. ? block) or 32x32 pixel metatiles
(width of SMB pipe) in order to align the map with the attribute areas.

Worked example

https://wiki.nesdev.com/w/index.php?title=Metatile&action=edit&redlink=1

The background in the game Thwaite, with an overlaid attribute grid.

https://wiki.nesdev.com/w/index.php/File:Thwaite_bg_with_attr_grid.png
https://wiki.nesdev.com/w/index.php/Thwaite

Each 16x16 pixel color area has one of four color sets assigned to it, and one byte controls four color areas.

The background palette is divided into four color sets.

The byte at $23F2 has color set 3 at top left, 1 at top right, 2 at bottom left, and 2 at bottom right. Thus its attribute
is calculated as follows:

value = (topleft << 0) | (topright << 2) | (bottomleft << 4) | (bottomright << 6)
 = (3 << 0) | (1 << 2) | (2 << 4) | (2 << 6)
 = $03 | $04 | $20 | $80
 = $A7

Glitches
There are some well-known glitches when rendering attributes in NES and Famicom games.

While the attribute table specifies one of four three-color palettes for each 16x16 pixel region, the left-side clipping
window in PPUMASK ($2001) is only 8 pixels wide.

https://wiki.nesdev.com/w/index.php/File:Thwaite_attrs.png
https://wiki.nesdev.com/w/index.php/File:Thwaite_palette_color_sets.png
https://wiki.nesdev.com/w/index.php/PPU_registers

This is the reason why games that use either horizontal or vertical mirroring modes for arbitrary-direction scrolling
often have color artifacts on one side of the screen (on the right side in Super Mario Bros. 3; on the trailing side of
the scroll in Kirby's Adventure; and at the top and bottom in Super C).

The game Alfred Chicken hides glitches on the left and right sides by using both left clipping and hiding the right
side of the screen under solid-colored sprites. To mask the entire 240-scanline height, this approach would occupy
15 entries of 64 in the sprite table in 8x16 sprite mode, or 30 entries in the 8x8 mode.

Palettes

Memory Map
The palette for the background runs from VRAM $3F00 to $3F0F; the palette for the sprites runs from $3F10 to
$3F1F. Each color takes up one byte.

Address Purpose
$3F00 Universal background color
$3F01-$3F03 Background palette 0
$3F05-$3F07 Background palette 1
$3F09-$3F0B Background palette 2
$3F0D-$3F0F Background palette 3
$3F11-$3F13 Sprite palette 0
$3F15-$3F17 Sprite palette 1
$3F19-$3F1B Sprite palette 2
$3F1D-$3F1F Sprite palette 3

Each palette has three colors. Each 16x16 pixel area of the background can use the backdrop color and the three
colors from one of the four background palettes. The choice of palette for each 16x16 pixel area is controlled by
bits in the attribute table at the end of each nametable. Each sprite can use the three colors from one of the sprite
palettes. The choice of palette is in attribute 2 of each sprite (see PPU OAM).

Addresses $3F04/$3F08/$3F0C can contain unique data, though these values are not used by the PPU when
normally rendering (since the pattern values that would otherwise select those cells select the backdrop color
instead). They can still be shown using the background palette hack, explained below.

Addresses $3F10/$3F14/$3F18/$3F1C are mirrors of $3F00/$3F04/$3F08/$3F0C. Note that this goes for writing
as well as reading. A symptom of not having implemented this correctly in an emulator is the sky being black in
Super Mario Bros., which writes the backdrop color through $3F10.

Thus, indices into the palette are formed as follows:

43210
|||||
|||++- Pixel value from tile data
|++--- Palette number from attribute table or OAM
+----- Background/Sprite select

https://wiki.nesdev.com/w/index.php/Mirroring
https://wiki.nesdev.com/w/index.php/PPU_scrolling
https://wiki.nesdev.com/w/index.php/PPU_nametables
https://wiki.nesdev.com/w/index.php/PPU_OAM

NES palette generated with Bisqwit's tool

As in some second-generation game consoles, values in the NES palette are based on hue and brightness:

76543210
||||||||
||||++++- Hue (phase, determines NTSC/PAL chroma)
||++----- Value (voltage, determines NTSC/PAL luma)
++------- Unimplemented, reads back as 0

Hue $0 is light gray, $1-$C are blue to red to green to cyan, $D is dark gray, and $E-$F are mirrors of $1D (black).
The canonical code for "black" is $0F or $1D. $0D should not be used; it results in a "blacker than black" signal
that may cause problems for some TVs. It works this way because of the way colors are represented in an NTSC or
PAL signal, with the phase of a color subcarrier controlling the hue. For details, see NTSC video, or for a list see
Color $0D games.

The 2C03 RGB PPU used in the PlayChoice-10 and Famicom Titler renders hue $D as black, not dark gray. The
2C04 PPUs used in many Vs. System arcade games have completely different palettes as a copy protection
measure.

Palettes

2C02

The RF Famicom, AV Famicom, NES (both front-
and top-loading), and the North American version
of the Sharp Nintendo TV use the 2C02 PPU.
Unlike some other consoles' video circuits, the
2C02 does not generate RGB video and then
encode that to composite. Instead it generates
NTSC video directly in the composite domain.
The TV decodes this into RGB to drive its picture
tube, and most TVs' decoders intentionally deviate
somewhat from the NTSC standard.

Some emulators decode the NTSC signal in real time. Others use a predefined palette, such as one commonly
stored in Classic VGA Palette format (http://www.shikadi.net/moddingwiki/VGA_Palette) (.pal), in which each
triplet represents the sRGB color that results from decoding a large flat area with a given palette value. Using such
a table directly will result in overly "clean" video that looks somewhat more like a PlayChoice (see 2C03 below),
and some games will look graphically sterile if quirks of the NES's video output are not emulated. However,
sometimes people want something functional before they bother with actually generating a composite signal and
decoding it, or they're making an emulator for a low-end device that cannot decode NTSC video in real time.

The following table was generated using blargg's Full Palette demo (http://forums.nesdev.com/viewtopic.php?
f=2&t=6484) on Nestopia:

Other tools for generating a palette include one by Bisqwit (http://bisqwit.iki.fi/utils/nespalette.php) and one by
Drag (http://drag.wootest.net/misc/palgen.html). These simulate generating a large area of one flat color and then
decoding that with the adjustment knobs set to various settings.

 84 84 84 0 30 116 8 16 144 48 0 136 68 0 100 92 0 48 84 4 0 60 24 0 32 42 0 8 58 0 0 6
152 150 152 8 76 196 48 50 236 92 30 228 136 20 176 160 20 100 152 34 32 120 60 0 84 90 0 40 114 0 8 12
236 238 236 76 154 236 120 124 236 176 98 236 228 84 236 236 88 180 236 106 100 212 136 32 160 170 0 116 196 0 76 20
236 238 236 168 204 236 188 188 236 212 178 236 236 174 236 236 174 212 236 180 176 228 196 144 204 210 120 180 222 120 168 22

https://wiki.nesdev.com/w/index.php/File:Savtool-swatches.png
https://en.wikipedia.org/wiki/HSL_and_HSV
https://wiki.nesdev.com/w/index.php/NTSC_video
https://wiki.nesdev.com/w/index.php/Color_$0D_games
https://wiki.nesdev.com/w/index.php/Vs._System
https://wiki.nesdev.com/w/index.php/NTSC_video
http://www.shikadi.net/moddingwiki/VGA_Palette
https://wiki.nesdev.com/w/index.php/.pal
http://forums.nesdev.com/viewtopic.php?f=2&t=6484
https://wiki.nesdev.com/w/index.php/Emulators
http://bisqwit.iki.fi/utils/nespalette.php
http://drag.wootest.net/misc/palgen.html

The 2C03, 2C04, and 2C05, on the other hand, all output analog red, green, blue, and sync (RGBS) signals. The
sync signal contains horizontal and vertical sync pulses in the same format as an all-black composite signal. Each
of the three video channels uses a 3-bit DAC driven by a look-up table in a 64x9-bit ROM inside the PPU. The
look-up tables (one digit for each of red, green, and blue, in order) are given below:

2C03 and 2C05

This palette is intentionally similar to the NES's standard palette, but notably is missing the greys in entries $2D
and $3D. The 2C03 is used in Vs. Duck Hunt, Vs. Tennis, all PlayChoice games, the Famicom Titler, and the
Famicom TV. The 2C05 is used in some later Vs. games as a copy protection measure. Both have been used in
RGB mods for the NES, as a circuit implementing A0' = A0 xor (A1 nor A2) can swap PPUCTRL and
PPUMASK to make a 2C05 behave as a 2C03.

333,014,006,326,403,503,510,420,320,120,031,040,022,000,000,000
555,036,027,407,507,704,700,630,430,140,040,053,044,000,000,000
777,357,447,637,707,737,740,750,660,360,070,276,077,000,000,000
777,567,657,757,747,755,764,772,773,572,473,276,467,000,000,000

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F

2C04

All four 2C04 PPUs contain the same master palette, but in different permutations. It's almost a superset of the
2C03/5 palette, adding four greys, six other colors, and making the bright yellow more pure.

No version of the 2C04 was ever made with the below ordering, but it shows the similarity to the 2C03:

333 014 006 326 403 503 510 420 320 120 031 dup of ↙ 022 111 003 020

555 036 027 407 507 704 700 630 430 140 040 053 044 222 200 310

777 357 447 637 707 737 740 750 660 360 070 dup of ↓ 077 444 000 000

777 567 657 757 747 755 764 770 773 572 473 276 467 666 653 760

The PPUMASK monochrome bit has the same implementation as on the 2C02, and so it has an unintuitive effect
on the 2C04 CPUs. Rather than forcing colors to grayscale, it instead forces them to the first column.

RP2C04-0001

MAME's source claims that Baseball, Freedom Force, Gradius, Hogan's Alley, Mach Rider, Pinball, and Platoon
require this palette.

https://wiki.nesdev.com/w/index.php/PPUMASK

755,637,700,447,044,120,222,704,777,333,750,503,403,660,320,777
357,653,310,360,467,657,764,027,760,276,000,200,666,444,707,014
003,567,757,070,077,022,053,507,000,420,747,510,407,006,740,000
000,140,555,031,572,326,770,630,020,036,040,111,773,737,430,473

RP2C04-0002

MAME's source claims that Castlevania, Mach Rider (Endurance Course), Raid on Bungeling Bay, Slalom,
Soccer, Stroke & Match Golf (both versions), and Wrecking Crew require this palette.

000,750,430,572,473,737,044,567,700,407,773,747,777,637,467,040
020,357,510,666,053,360,200,447,222,707,003,276,657,320,000,326
403,764,740,757,036,310,555,006,507,760,333,120,027,000,660,777
653,111,070,630,022,014,704,140,000,077,420,770,755,503,031,444

RP2C04-0003

MAME's source claims that Balloon Fight, Dr. Mario, Excitebike (US), Goonies, and Soccer require this palette.

507,737,473,555,040,777,567,120,014,000,764,320,704,666,653,467
447,044,503,027,140,430,630,053,333,326,000,006,700,510,747,755
637,020,003,770,111,750,740,777,360,403,357,707,036,444,000,310
077,200,572,757,420,070,660,222,031,000,657,773,407,276,760,022

RP2C04-0004

MAME's source claims that Clu Clu Land, Excitebike (Japan), Ice Climber (both versions), and Super Mario Bros.
require this palette.

430,326,044,660,000,755,014,630,555,310,070,003,764,770,040,572
737,200,027,747,000,222,510,740,653,053,447,140,403,000,473,357
503,031,420,006,407,507,333,704,022,666,036,020,111,773,444,707
757,777,320,700,760,276,777,467,000,750,637,567,360,657,077,120

Backdrop color (palette index 0) uses
During forced blanking, when neither background nor sprites are enabled in PPUMASK ($2001), the picture will
show the backdrop color. If only the background or sprites are disabled, or if the left 8 pixels are clipped off, the
PPU continues its normal video memory access pattern but uses the backdrop color for anything disabled.

The background palette hack
If the current VRAM address points in the range $3F00-$3FFF during forced blanking, the color indicated by this
palette location will be shown on screen instead of the backdrop color. (Looking at the relevant circuitry in Visual
2C02, this is an intentional feature of the PPU and not merely a side effect of how rendering works.) This can be
used to display colors from the normally unused $3F04/$3F08/$3F0C palette locations. A loop that fills the palette
will cause each color in turn to be shown on the screen, so to avoid horizontal rainbow bar glitches while loading
the palette, wait for a real vertical blank first using an NMI technique.

https://wiki.nesdev.com/w/index.php/PPU_registers
https://wiki.nesdev.com/w/index.php/PPU_rendering
https://wiki.nesdev.com/w/index.php/Visual_2C02
https://wiki.nesdev.com/w/index.php/NMI

Color names
When programmers and artists are communicating, it's often useful to have human-readable names for colors.
Many graphic designers who have done web or game work will be familiar with HTML color names.

Luma

$0F: Black
$00: Dark gray
$10: Light gray or silver
$20: White
$01-$0C: Dark colors, medium mixed with black
$11-$1C: Medium colors, similar brightness to dark gray
$21-$2C: Light colors, similar brightness to light gray
$31-$3C: Pale colors, light mixed with white

Chroma

Names for hues:

$x0: Gray
$x2: Blue
$x4: Magenta
$x6: Red
$x7: Orange
$x8: Yellow or olive
$xA: Green
$xC: Cyan

RGBI

These NES colors approximate colors in 16-color RGBI palettes, such as the CGA, EGA, or classic Windows
palette, though the NES doesn't really have a good yellow:

$02: Navy
$06: Maroon
$12: Blue
$14: Purple
$16: Red
$17: Brown
$18: Olive
$1A: Green
$1C: Aqua
$24: Fuchsia/Magenta
$2A: Lime
$2C: Teal

Memory map

https://en.wikipedia.org/wiki/Web_colors#HTML_color_names

PPU memory map

The PPU addresses a 16kB space, $0000-3FFF, completely separate from the CPU's address bus. It is either directly
accessed by the PPU itself, or via the CPU with memory mapped registers at $2006 and $2007.

The NES has 2kB of RAM dedicated to the PPU, normally mapped to the nametable address space from $2000-
2FFF, but this can be rerouted through custom cartridge wiring.

Address range Size Description
$0000-$0FFF $1000 Pattern table 0
$1000-$1FFF $1000 Pattern Table 1
$2000-$23FF $0400 Nametable 0
$2400-$27FF $0400 Nametable 1
$2800-$2BFF $0400 Nametable 2
$2C00-$2FFF $0400 Nametable 3
$3000-$3EFF $0F00 Mirrors of $2000-$2EFF
$3F00-$3F1F $0020 Palette RAM indexes
$3F20-$3FFF $00E0 Mirrors of $3F00-$3F1F

In addition, the PPU internally contains 256 bytes of memory known as Object Attribute Memory which
determines how sprites are rendered. The CPU can manipulate this memory through memory mapped registers at
OAMADDR ($2003), OAMDATA ($2004), and OAMDMA ($4014).

Address range Size Description
$00-$0C (0 of 4) $40 Sprite Y coordinate
$01-$0D (1 of 4) $40 Sprite tile #
$02-$0E (2 of 4) $40 Sprite attribute
$03-$0F (3 of 4) $40 Sprite X coordinate

Hardware mapping
The mappings above are the fixed addresses from which the PPU uses to fetch data during rendering. The actual
device that the PPU fetches data from, however, may be configured by the cartridge.

$0000-1FFF is normally mapped by the cartridge to a CHR-ROM or CHR-RAM, often with a bank
switching mechanism.

$2000-2FFF is normally mapped to the 2kB NES internal VRAM, providing 2 nametables with a mirroring
configuration controlled by the cartridge, but it can be partly or fully remapped to RAM on the cartridge,
allowing up to 4 simultaneous nametables.

$3000-3EFF is usually a mirror of the 2kB region from $2000-2EFF. The PPU does not render from this
address range, so this space has negligible utility.

$3F00-3FFF is not configurable, always mapped to the internal palette control.

Retrieved from "https://wiki.nesdev.com/w/index.php?title=PPU_programmer_reference&oldid=1472"

https://wiki.nesdev.com/w/index.php/PPU
https://wiki.nesdev.com/w/index.php/PPU_registers
https://wiki.nesdev.com/w/index.php/PPU_pattern_tables
https://wiki.nesdev.com/w/index.php/PPU_nametables
https://wiki.nesdev.com/w/index.php/PPU_palettes
https://wiki.nesdev.com/w/index.php/PPU_OAM
https://wiki.nesdev.com/w/index.php/PPU_registers
https://wiki.nesdev.com/w/index.php/OAMADDR
https://wiki.nesdev.com/w/index.php/OAMDATA
https://wiki.nesdev.com/w/index.php/OAMDMA
https://wiki.nesdev.com/w/index.php/CHR_ROM_vs._CHR_RAM
https://wiki.nesdev.com/w/index.php/Mirroring#Nametable_Mirroring
https://wiki.nesdev.com/w/index.php?title=PPU_programmer_reference&oldid=1472

This page was last modified on 28 March 2010, at 23:23.

