Mesen-S/Core/Ppu.cpp

2327 lines
75 KiB
C++
Raw Permalink Blame History

#include "stdafx.h"
#include "Ppu.h"
#include "Console.h"
#include "MemoryManager.h"
#include "Cpu.h"
#include "Spc.h"
#include "InternalRegisters.h"
#include "EmuSettings.h"
#include "ControlManager.h"
#include "VideoDecoder.h"
#include "VideoRenderer.h"
#include "NotificationManager.h"
#include "DmaController.h"
#include "MessageManager.h"
#include "EventType.h"
#include "RewindManager.h"
#include "../Utilities/HexUtilities.h"
#include "../Utilities/Serializer.h"
static constexpr uint8_t _oamSizes[8][2][2] = {
{ { 1, 1 }, { 2, 2 } }, //8x8 + 16x16
{ { 1, 1 }, { 4, 4 } }, //8x8 + 32x32
{ { 1, 1 }, { 8, 8 } }, //8x8 + 64x64
{ { 2, 2 }, { 4, 4 } }, //16x16 + 32x32
{ { 2, 2 }, { 8, 8 } }, //16x16 + 64x64
{ { 4, 4 }, { 8, 8 } }, //32x32 + 64x64
{ { 2, 4 }, { 4, 8 } }, //16x32 + 32x64
{ { 2, 4 }, { 4, 4 } } //16x32 + 32x32
};
Ppu::Ppu(Console* console)
{
_console = console;
_vram = new uint16_t[Ppu::VideoRamSize >> 1];
_outputBuffers[0] = new uint16_t[512 * 478];
_outputBuffers[1] = new uint16_t[512 * 478];
memset(_outputBuffers[0], 0, 512 * 478 * sizeof(uint16_t));
memset(_outputBuffers[1], 0, 512 * 478 * sizeof(uint16_t));
}
Ppu::~Ppu()
{
delete[] _vram;
delete[] _outputBuffers[0];
delete[] _outputBuffers[1];
}
void Ppu::PowerOn()
{
_skipRender = false;
_regs = _console->GetInternalRegisters().get();
_settings = _console->GetSettings().get();
_spc = _console->GetSpc().get();
_memoryManager = _console->GetMemoryManager().get();
_currentBuffer = _outputBuffers[0];
_state = {};
_state.ForcedVblank = true;
_state.VramIncrementValue = 1;
if(_settings->GetEmulationConfig().EnableRandomPowerOnState) {
RandomizeState();
}
_settings->InitializeRam(_vram, Ppu::VideoRamSize);
_settings->InitializeRam(_cgram, Ppu::CgRamSize);
_settings->InitializeRam(_oamRam, Ppu::SpriteRamSize);
memset(_spriteIndexes, 0xFF, sizeof(_spriteIndexes));
UpdateNmiScanline();
}
void Ppu::Reset()
{
_scanline = 0;
_state.ForcedVblank = true;
_oddFrame = 0;
}
uint32_t Ppu::GetFrameCount()
{
return _frameCount;
}
uint16_t Ppu::GetScanline()
{
return _scanline;
}
uint16_t Ppu::GetCycle()
{
//"normally dots 323 and 327 are 6 master cycles instead of 4."
uint16_t hClock = _memoryManager->GetHClock();
if(hClock <= 1292) {
return hClock >> 2;
} else if(hClock <= 1310) {
return (hClock - 2) >> 2;
} else {
return (hClock - 4) >> 2;
}
}
uint16_t Ppu::GetNmiScanline()
{
return _nmiScanline;
}
uint16_t Ppu::GetVblankStart()
{
return _vblankStartScanline;
}
PpuState Ppu::GetState()
{
PpuState state;
GetState(state, false);
return state;
}
void Ppu::GetState(PpuState &state, bool returnPartialState)
{
if(!returnPartialState) {
state = _state;
}
state.Cycle = GetCycle();
state.Scanline = _scanline;
state.HClock = _memoryManager->GetHClock();
state.FrameCount = _frameCount;
}
template<bool hiResMode>
void Ppu::GetTilemapData(uint8_t layerIndex, uint8_t columnIndex)
{
/* The current layer's options */
LayerConfig &config = _state.Layers[layerIndex];
uint16_t vScroll = config.VScroll;
uint16_t hScroll = hiResMode ? (config.HScroll << 1) : config.HScroll;
if(_hOffset || _vOffset) {
uint16_t enableBit = layerIndex == 0 ? 0x2000 : 0x4000;
if(_state.BgMode == 4) {
if((_hOffset & 0x8000) == 0 && (_hOffset & enableBit)) {
hScroll = (hScroll & 0x07) | (_hOffset & 0x3F8);
}
if((_hOffset & 0x8000) != 0 && (_hOffset & enableBit)) {
vScroll = (_hOffset & 0x3FF);
}
} else {
if(_hOffset & enableBit) {
hScroll = (hScroll & 0x07) | (_hOffset & 0x3F8);
}
if(_vOffset & enableBit) {
vScroll = (_vOffset & 0x3FF);
}
}
}
if(hiResMode) {
hScroll >>= 1;
}
uint16_t realY = IsDoubleHeight() ? (_oddFrame ? ((_scanline << 1) + 1) : (_scanline << 1)) : _scanline;
if(_state.MosaicEnabled && (_state.MosaicEnabled & (1 << layerIndex))) {
//Keep the "scanline" to what it was at the start of this mosaic block
realY -= _state.MosaicSize - _mosaicScanlineCounter;
if(IsDoubleHeight()) {
realY -= _state.MosaicSize - _mosaicScanlineCounter;
}
}
/* The current row of tiles (e.g scanlines 16-23 is row 2) */
uint16_t row = (realY + vScroll) >> (config.LargeTiles ? 4 : 3);
/* Tilemap offset based on the current row & tilemap size options */
uint16_t addrVerticalScrollingOffset = config.DoubleHeight ? ((row & 0x20) << (config.DoubleWidth ? 6 : 5)) : 0;
/* The start address for tiles on this row */
uint16_t baseOffset = config.TilemapAddress + addrVerticalScrollingOffset + ((row & 0x1F) << 5);
/* The current column index (in terms of 8x8 or 16x16 tiles) */
uint16_t column = columnIndex + (hScroll >> 3);
if(!hiResMode && config.LargeTiles) {
//For 16x16 tiles, need to return the same tile for 2 columns 8 pixel columns in a row
column >>= 1;
}
/* The tilemap address to read the tile data from */
uint16_t addr = baseOffset + (column & 0x1F) + (config.DoubleWidth ? (column & 0x20) << 5 : 0);
_layerData[layerIndex].Tiles[columnIndex].TilemapData = _vram[addr & 0x7FFF];
_layerData[layerIndex].Tiles[columnIndex].VScroll = vScroll;
}
template<bool hiResMode, uint8_t bpp, bool secondTile>
void Ppu::GetChrData(uint8_t layerIndex, uint8_t column, uint8_t plane)
{
LayerConfig &config = _state.Layers[layerIndex];
TileData &tileData = _layerData[layerIndex].Tiles[column];
uint16_t tilemapData = tileData.TilemapData;
bool largeTileWidth = hiResMode || config.LargeTiles;
bool vMirror = (tilemapData & 0x8000) != 0;
bool hMirror = (tilemapData & 0x4000) != 0;
uint16_t realY = IsDoubleHeight() ? (_oddFrame ? ((_scanline << 1) + 1) : (_scanline << 1)) : _scanline;
if(_state.MosaicEnabled && (_state.MosaicEnabled & (1 << layerIndex))) {
//Keep the "scanline" to what it was at the start of this mosaic block
realY -= _state.MosaicSize - _mosaicScanlineCounter;
if(IsDoubleHeight()) {
realY -= _state.MosaicSize - _mosaicScanlineCounter + (_oddFrame ? 1 : 0);
}
}
bool useSecondTile = secondTile;
if(!hiResMode && config.LargeTiles) {
//For 16x16 tiles, need to return the 2nd part of the tile every other column
useSecondTile = (((column << 3) + config.HScroll) & 0x08) == 0x08;
}
uint16_t tileIndex = tilemapData & 0x3FF;
if(largeTileWidth) {
tileIndex = (
tileIndex +
(config.LargeTiles ? (((realY + tileData.VScroll) & 0x08) ? (vMirror ? 0 : 16) : (vMirror ? 16 : 0)) : 0) +
(largeTileWidth ? (useSecondTile ? (hMirror ? 0 : 1) : (hMirror ? 1 : 0)) : 0)
) & 0x3FF;
}
uint16_t tileStart = config.ChrAddress + tileIndex * 4 * bpp;
uint8_t baseYOffset = (realY + tileData.VScroll) & 0x07;
uint8_t yOffset = vMirror ? (7 - baseYOffset) : baseYOffset;
uint16_t pixelStart = tileStart + yOffset + (plane << 3);
tileData.ChrData[plane + (secondTile ? bpp / 2 : 0)] = _vram[pixelStart & 0x7FFF];
}
void Ppu::GetHorizontalOffsetByte(uint8_t columnIndex)
{
uint16_t columnOffset = (((columnIndex << 3) + (_state.Layers[2].HScroll & ~0x07)) >> 3) & (_state.Layers[2].DoubleWidth ? 0x3F : 0x1F);
uint16_t rowOffset = (_state.Layers[2].VScroll >> 3) & (_state.Layers[2].DoubleHeight ? 0x3F : 0x1F);
_hOffset = _vram[(_state.Layers[2].TilemapAddress + columnOffset + (rowOffset << 5)) & 0x7FFF];
}
void Ppu::GetVerticalOffsetByte(uint8_t columnIndex)
{
uint16_t columnOffset = (((columnIndex << 3) + (_state.Layers[2].HScroll & ~0x07)) >> 3) & (_state.Layers[2].DoubleWidth ? 0x3F : 0x1F);
uint16_t rowOffset = (_state.Layers[2].VScroll >> 3) & (_state.Layers[2].DoubleHeight ? 0x3F : 0x1F);
uint16_t tileOffset = columnOffset + (rowOffset << 5);
//The vertical offset is 0x40 bytes later - but wraps around within the tilemap based on the tilemap size (0x800 or 0x1000 bytes)
uint16_t vOffsetAddr = _state.Layers[2].TilemapAddress + ((tileOffset + 0x20) & (_state.Layers[2].DoubleHeight ? 0x7FF : 0x3FF));
_vOffset = _vram[vOffsetAddr & 0x7FFF];
}
void Ppu::FetchTileData()
{
if(_state.ForcedVblank) {
return;
}
if(_fetchBgStart == 0) {
_hOffset = 0;
_vOffset = 0;
}
if(_state.BgMode == 0) {
for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) {
switch(x & 0x07) {
case 0: GetTilemapData<false>(3, x >> 3); break;
case 1: GetTilemapData<false>(2, x >> 3); break;
case 2: GetTilemapData<false>(1, x >> 3); break;
case 3: GetTilemapData<false>(0, x >> 3); break;
case 4: GetChrData<false, 2>(3, x >> 3, 0); break;
case 5: GetChrData<false, 2>(2, x >> 3, 0); break;
case 6: GetChrData<false, 2>(1, x >> 3, 0); break;
case 7: GetChrData<false, 2>(0, x >> 3, 0); break;
}
}
} else if(_state.BgMode == 1) {
for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) {
switch(x & 0x07) {
case 0: GetTilemapData<false>(2, x >> 3); break;
case 1: GetTilemapData<false>(1, x >> 3); break;
case 2: GetTilemapData<false>(0, x >> 3); break;
case 3: GetChrData<false, 2>(2, x >> 3, 0); break;
case 4: GetChrData<false, 4>(1, x >> 3, 0); break;
case 5: GetChrData<false, 4>(1, x >> 3, 1); break;
case 6: GetChrData<false, 4>(0, x >> 3, 0); break;
case 7: GetChrData<false, 4>(0, x >> 3, 1); break;
}
}
} else if(_state.BgMode == 2) {
for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) {
switch(x & 0x07) {
case 0: GetTilemapData<false>(1, x >> 3); break;
case 1: GetTilemapData<false>(0, x >> 3); break;
case 2: GetHorizontalOffsetByte(x >> 3); break;
case 3: GetVerticalOffsetByte(x >> 3); break;
case 4: GetChrData<false, 4>(1, x >> 3, 0); break;
case 5: GetChrData<false, 4>(1, x >> 3, 1); break;
case 6: GetChrData<false, 4>(0, x >> 3, 0); break;
case 7: GetChrData<false, 4>(0, x >> 3, 1); break;
}
}
} else if(_state.BgMode == 3) {
for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) {
switch(x & 0x07) {
case 0: GetTilemapData<false>(1, x >> 3); break;
case 1: GetTilemapData<false>(0, x >> 3); break;
case 2: GetChrData<false, 4>(1, x >> 3, 0); break;
case 3: GetChrData<false, 4>(1, x >> 3, 1); break;
case 4: GetChrData<false, 8>(0, x >> 3, 0); break;
case 5: GetChrData<false, 8>(0, x >> 3, 1); break;
case 6: GetChrData<false, 8>(0, x >> 3, 2); break;
case 7: GetChrData<false, 8>(0, x >> 3, 3); break;
}
}
} else if(_state.BgMode == 4) {
for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) {
switch(x & 0x07) {
case 0: GetTilemapData<false>(1, x >> 3); break;
case 1: GetTilemapData<false>(0, x >> 3); break;
case 2: GetHorizontalOffsetByte(x >> 3); break;
case 3: GetChrData<false, 2>(1, x >> 3, 0); break;
case 4: GetChrData<false, 8>(0, x >> 3, 0); break;
case 5: GetChrData<false, 8>(0, x >> 3, 1); break;
case 6: GetChrData<false, 8>(0, x >> 3, 2); break;
case 7: GetChrData<false, 8>(0, x >> 3, 3); break;
}
}
} else if(_state.BgMode == 5) {
for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) {
switch(x & 0x07) {
case 0: GetTilemapData<true>(1, x >> 3); break;
case 1: GetTilemapData<true>(0, x >> 3); break;
case 2: GetChrData<true, 2>(1, x >> 3, 0); break;
case 3: GetChrData<true, 2, true>(1, x >> 3, 0); break;
case 4: GetChrData<true, 4>(0, x >> 3, 0); break;
case 5: GetChrData<true, 4>(0, x >> 3, 1); break;
case 6: GetChrData<true, 4, true>(0, x >> 3, 0); break;
case 7: GetChrData<true, 4, true>(0, x >> 3, 1); break;
}
}
} else if(_state.BgMode == 6) {
for(int x = _fetchBgStart; x <= _fetchBgEnd; x++) {
switch(x & 0x07) {
case 0: GetTilemapData<true>(1, x >> 3); break;
case 1: GetTilemapData<true>(0, x >> 3); break;
case 2: GetHorizontalOffsetByte(x >> 3); break;
case 3: GetVerticalOffsetByte(x >> 3); break;
case 4: GetChrData<true, 4>(0, x >> 3, 0); break;
case 5: GetChrData<true, 4>(0, x >> 3, 1); break;
case 6: GetChrData<true, 4, true>(0, x >> 3, 0); break;
case 7: GetChrData<true, 4, true>(0, x >> 3, 1); break;
}
}
}
}
bool Ppu::ProcessEndOfScanline(uint16_t hClock)
{
if(hClock >= 1364 || (hClock == 1360 && _scanline == 240 && _oddFrame && !_state.ScreenInterlace)) {
//"In non-interlace mode scanline 240 of every other frame (those with $213f.7=1) is only 1360 cycles."
if(_scanline < _vblankStartScanline) {
RenderScanline();
if(_scanline == 0) {
_overscanFrame = _state.OverscanMode;
_mosaicScanlineCounter = _state.MosaicEnabled ? _state.MosaicSize + 1 : 0;
//Update overclock timings once per frame
UpdateNmiScanline();
if(!_skipRender) {
if(!_interlacedFrame) {
_currentBuffer = _currentBuffer == _outputBuffers[0] ? _outputBuffers[1] : _outputBuffers[0];
}
//If we're not skipping this frame, reset the high resolution/interlace flags
_useHighResOutput = IsDoubleWidth() || _state.ScreenInterlace;
_interlacedFrame = _state.ScreenInterlace;
}
}
if(_mosaicScanlineCounter) {
_mosaicScanlineCounter--;
if(_state.MosaicEnabled && !_mosaicScanlineCounter) {
_mosaicScanlineCounter = _state.MosaicSize;
}
}
_drawStartX = 0;
_drawEndX = 0;
_fetchBgStart = 0;
_fetchBgEnd = 0;
_fetchSpriteStart = 0;
_fetchSpriteEnd = 0;
_spriteEvalStart = 0;
_spriteEvalEnd = 0;
_spriteFetchingDone = false;
memset(_hasSpritePriority, 0, sizeof(_hasSpritePriority));
memcpy(_spritePriority, _spritePriorityCopy, sizeof(_spritePriority));
for(int i = 0; i < 255; i++) {
if(_spritePriority[i] < 4) {
_hasSpritePriority[_spritePriority[i]] = true;
}
}
memcpy(_spritePalette, _spritePaletteCopy, sizeof(_spritePalette));
memcpy(_spriteColors, _spriteColorsCopy, sizeof(_spriteColors));
memset(_spriteIndexes, 0xFF, sizeof(_spriteIndexes));
memset(_mainScreenFlags, 0, sizeof(_mainScreenFlags));
memset(_subScreenPriority, 0, sizeof(_subScreenPriority));
}
_scanline++;
if(_scanline == _nmiScanline) {
ProcessLocationLatchRequest();
_latchRequest = false;
//Reset OAM address at the start of vblank?
if(!_state.ForcedVblank) {
//TODO, the timing of this may be slightly off? should happen at H=10 based on anomie's docs
_internalOamAddress = (_state.OamRamAddress << 1);
}
VideoConfig cfg = _settings->GetVideoConfig();
_configVisibleLayers = (cfg.HideBgLayer0 ? 0 : 1) | (cfg.HideBgLayer1 ? 0 : 2) | (cfg.HideBgLayer2 ? 0 : 4) | (cfg.HideBgLayer3 ? 0 : 8) | (cfg.HideSprites ? 0 : 16);
_console->ProcessEvent(EventType::EndFrame);
_frameCount++;
_spc->ProcessEndFrame();
_regs->SetNmiFlag(true);
SendFrame();
_console->ProcessEndOfFrame();
} else if(_scanline >= _vblankEndScanline + 1) {
//"Frames are 262 scanlines in non-interlace mode, while in interlace mode frames with $213f.7=0 are 263 scanlines"
_oddFrame ^= 1;
_regs->SetNmiFlag(false);
_scanline = 0;
_rangeOver = false;
_timeOver = false;
_console->ProcessEvent(EventType::StartFrame);
_skipRender = (
!_settings->GetVideoConfig().DisableFrameSkipping &&
!_console->GetRewindManager()->IsRewinding() &&
!_console->GetVideoRenderer()->IsRecording() &&
(_settings->GetEmulationSpeed() == 0 || _settings->GetEmulationSpeed() > 150) &&
_frameSkipTimer.GetElapsedMS() < 10
);
if(_console->IsRunAheadFrame()) {
_skipRender = true;
}
//Ensure the SPC is re-enabled for the next frame
_spc->SetSpcState(true);
}
UpdateSpcState();
return true;
}
return false;
}
void Ppu::UpdateSpcState()
{
//When using overclocking, turn off the SPC during the extra scanlines
if(_overclockEnabled && _scanline > _vblankStartScanline) {
if(_scanline > _adjustedVblankEndScanline) {
//Disable APU for extra lines after NMI
_spc->SetSpcState(false);
} else if(_scanline >= _vblankStartScanline && _scanline < _nmiScanline) {
//Disable APU for extra lines before NMI
_spc->SetSpcState(false);
} else {
_spc->SetSpcState(true);
}
}
}
void Ppu::UpdateNmiScanline()
{
EmulationConfig cfg = _settings->GetEmulationConfig();
if(_console->GetRegion() == ConsoleRegion::Ntsc) {
if(!_state.ScreenInterlace || _oddFrame) {
_baseVblankEndScanline = 261;
} else {
_baseVblankEndScanline = 262;
}
} else {
if(!_state.ScreenInterlace || _oddFrame) {
_baseVblankEndScanline = 311;
} else {
_baseVblankEndScanline = 312;
}
}
_overclockEnabled = cfg.PpuExtraScanlinesBeforeNmi > 0 || cfg.PpuExtraScanlinesAfterNmi > 0;
_adjustedVblankEndScanline = _baseVblankEndScanline + cfg.PpuExtraScanlinesBeforeNmi;
_vblankEndScanline = _baseVblankEndScanline + cfg.PpuExtraScanlinesAfterNmi + cfg.PpuExtraScanlinesBeforeNmi;
_vblankStartScanline = _state.OverscanMode ? 240 : 225;
_nmiScanline = _vblankStartScanline + cfg.PpuExtraScanlinesBeforeNmi;
}
uint16_t Ppu::GetRealScanline()
{
if(!_overclockEnabled) {
return _scanline;
}
if(_scanline > _vblankStartScanline && _scanline <= _nmiScanline) {
//Pretend to be just before vblank until extra scanlines are over
return _vblankStartScanline - 1;
} else if(_scanline > _nmiScanline) {
if(_scanline > _adjustedVblankEndScanline) {
//Pretend to be at the end of vblank until extra scanlines are over
return _baseVblankEndScanline;
} else {
//Number the regular scanlines as they would normally be
return _scanline - _nmiScanline + _vblankStartScanline;
}
}
return _scanline;
}
uint16_t Ppu::GetVblankEndScanline()
{
return _vblankEndScanline;
}
uint16_t Ppu::GetLastScanline()
{
return _baseVblankEndScanline;
}
void Ppu::EvaluateNextLineSprites()
{
if(_spriteEvalStart == 0) {
_spriteCount = 0;
_oamEvaluationIndex = _state.EnableOamPriority ? ((_internalOamAddress & 0x1FC) >> 2) : 0;
}
if(_state.ForcedVblank) {
return;
}
for(int i = _spriteEvalStart; i <= _spriteEvalEnd; i++) {
if(!(i & 0x01)) {
//First cycle, read X & Y and high oam byte
FetchSpritePosition(_oamEvaluationIndex << 2);
} else {
//Second cycle: Check if sprite is in range, if so, keep its index
if(_currentSprite.IsVisible(_scanline, _state.ObjInterlace)) {
if(_spriteCount < 32) {
_spriteIndexes[_spriteCount] = _oamEvaluationIndex;
_spriteCount++;
} else {
_rangeOver = true;
}
}
_oamEvaluationIndex = (_oamEvaluationIndex + 1) & 0x7F;
}
}
}
void Ppu::FetchSpriteData()
{
//From H=272 to 339, fetch a single word of CHR data on every cycle (for up to 34 sprites)
if(_fetchSpriteStart == 0) {
memset(_spritePriorityCopy, 0xFF, sizeof(_spritePriorityCopy));
_spriteTileCount = 0;
_currentSprite.Index = 0xFF;
if(_spriteCount == 0) {
_spriteFetchingDone = true;
return;
}
_oamTimeIndex = _spriteIndexes[_spriteCount - 1];
}
for(int x = _fetchSpriteStart; x <= _fetchSpriteEnd; x++) {
if(x >= 2) {
//Fetch the tile using the OAM data loaded on the past 2 cycles, before overwriting it in FetchSpriteAttributes below
if(!_state.ForcedVblank) {
FetchSpriteTile(x & 0x01);
}
if((x & 1) && _spriteCount == 0 && _currentSprite.ColumnOffset == 0) {
//End this step
_spriteFetchingDone = true;
break;
}
}
if(_spriteCount > 0) {
if(x & 1) {
FetchSpriteAttributes((_oamTimeIndex << 2) | 0x02);
if(_spriteCount > 0) {
_oamTimeIndex = _spriteIndexes[_spriteCount - 1];
}
} else {
FetchSpritePosition(_oamTimeIndex << 2);
}
}
}
}
void Ppu::FetchSpritePosition(uint16_t oamAddress)
{
uint8_t highTableOffset = oamAddress >> 4;
uint8_t shift = ((oamAddress >> 1) & 0x06);
uint8_t highTableValue = _oamRam[0x200 | highTableOffset] >> shift;
uint8_t largeSprite = (highTableValue & 0x02) >> 1;
uint16_t oamValue = _oamRam[oamAddress] | (_oamRam[oamAddress + 1] << 8);
uint16_t sign = (highTableValue & 0x01) << 8;
uint8_t spriteIndex = oamAddress >> 2;
_currentSprite.X = (int16_t)((sign | (oamValue & 0xFF)) << 7) >> 7;
_currentSprite.Y = (oamValue >> 8);
_currentSprite.Width = _oamSizes[_state.OamMode][largeSprite][0] << 3;
if(spriteIndex != _currentSprite.Index) {
_currentSprite.Index = oamAddress >> 2;
_currentSprite.ColumnOffset = (_currentSprite.Width / 8);
if(_currentSprite.X <= -8 && _currentSprite.X != -256) {
//Skip the first tiles of the sprite (because the tiles are hidden to the left of the screen)
_currentSprite.ColumnOffset += _currentSprite.X / 8;
}
}
uint8_t height = _oamSizes[_state.OamMode][largeSprite][1] << 3;
_currentSprite.Height = height;
}
void Ppu::FetchSpriteAttributes(uint16_t oamAddress)
{
_spriteTileCount++;
if(_spriteTileCount > 34) {
_timeOver = true;
}
uint8_t flags = _oamRam[oamAddress + 1];
bool useSecondTable = (flags & 0x01) != 0;
_currentSprite.Palette = (flags >> 1) & 0x07;
_currentSprite.Priority = (flags >> 4) & 0x03;
_currentSprite.HorizontalMirror = (flags & 0x40) != 0;
_currentSprite.ColumnOffset--;
uint8_t yOffset;
int rowOffset;
int yGap = (_scanline - _currentSprite.Y);
if(_state.ObjInterlace) {
yGap <<= 1;
yGap |= _oddFrame;
}
bool verticalMirror = (flags & 0x80) != 0;
if(verticalMirror) {
yOffset = (_currentSprite.Height - 1 - yGap) & 0x07;
rowOffset = (_currentSprite.Height - 1 - yGap) >> 3;
} else {
yOffset = yGap & 0x07;
rowOffset = yGap >> 3;
}
uint8_t columnCount = (_currentSprite.Width / 8);
uint8_t tileRow = (_oamRam[oamAddress] & 0xF0) >> 4;
uint8_t tileColumn = _oamRam[oamAddress] & 0x0F;
uint8_t row = (tileRow + rowOffset) & 0x0F;
uint8_t columnOffset = _currentSprite.HorizontalMirror ? _currentSprite.ColumnOffset : (columnCount - _currentSprite.ColumnOffset - 1);
uint8_t tileIndex = (row << 4) | ((tileColumn + columnOffset) & 0x0F);
uint16_t tileStart = (_state.OamBaseAddress + (tileIndex << 4) + (useSecondTable ? _state.OamAddressOffset : 0));
_currentSprite.FetchAddress = (tileStart + yOffset) & 0x7FFF;
int16_t x = _currentSprite.X == -256 ? 0 : _currentSprite.X;
int16_t endTileX = x + ((columnCount - _currentSprite.ColumnOffset - 1) << 3) + 8;
_currentSprite.DrawX = _currentSprite.X + ((columnCount - _currentSprite.ColumnOffset - 1) << 3);
if(_currentSprite.ColumnOffset == 0 || endTileX >= 256) {
//Last tile of the sprite, or skip the remaining tiles (because the tiles are hidden to the right of the screen)
_spriteCount--;
_currentSprite.ColumnOffset = 0;
}
}
void Ppu::FetchSpriteTile(bool secondCycle)
{
//The timing for the fetches should be (mostly) accurate (H=272 to 339)
uint16_t chrData = _vram[_currentSprite.FetchAddress];
_currentSprite.ChrData[secondCycle] = chrData;
if(!secondCycle) {
_currentSprite.FetchAddress = (_currentSprite.FetchAddress + 8) & 0x7FFF;
} else {
int16_t xPos = _currentSprite.DrawX;
for(int x = 0; x < 8; x++) {
if(xPos + x < 0 || xPos + x > 255) {
continue;
}
uint8_t xOffset = _currentSprite.HorizontalMirror ? ((7 - x) & 0x07) : x;
uint8_t color = GetTilePixelColor<4>(_currentSprite.ChrData, 7 - xOffset);
if(color != 0) {
_spriteColorsCopy[xPos + x] = color;
_spritePriorityCopy[xPos + x] = _currentSprite.Priority;
_spritePaletteCopy[xPos + x] = _currentSprite.Palette;
}
}
}
}
void Ppu::RenderMode0()
{
constexpr uint8_t spritePriorities[4] = { 3, 6, 9, 12 };
RenderSprites(spritePriorities);
RenderTilemap<0, 2, 8, 11, 0>();
RenderTilemap<1, 2, 7, 10, 32>();
RenderTilemap<2, 2, 2, 5, 64>();
RenderTilemap<3, 2, 1, 4, 96>();
}
void Ppu::RenderMode1()
{
constexpr uint8_t spritePriorities[4] = { 2, 4, 7, 10 };
RenderSprites(spritePriorities);
RenderTilemap<0, 4, 6, 9>();
RenderTilemap<1, 4, 5, 8>();
if(!_state.Mode1Bg3Priority) {
RenderTilemap<2, 2, 1, 3>();
} else {
RenderTilemap<2, 2, 1, 11>();
}
}
void Ppu::RenderMode2()
{
constexpr uint8_t spritePriorities[4] = { 2, 4, 6, 8 };
RenderSprites(spritePriorities);
RenderTilemap<0, 4, 3, 7>();
RenderTilemap<1, 4, 1, 5>();
}
void Ppu::RenderMode3()
{
constexpr uint8_t spritePriorities[4] = { 2, 4, 6, 8 };
RenderSprites(spritePriorities);
RenderTilemap<0, 8, 3, 7>();
RenderTilemap<1, 4, 1, 5>();
}
void Ppu::RenderMode4()
{
constexpr uint8_t spritePriorities[4] = { 2, 4, 6, 8 };
RenderSprites(spritePriorities);
RenderTilemap<0, 8, 3, 7>();
RenderTilemap<1, 2, 1, 5>();
}
void Ppu::RenderMode5()
{
constexpr uint8_t spritePriorities[4] = { 2, 4, 6, 8 };
RenderSprites(spritePriorities);
RenderTilemap<0, 4, 3, 7>();
RenderTilemap<1, 2, 1, 5>();
}
void Ppu::RenderMode6()
{
constexpr uint8_t spritePriorities[4] = { 2, 3, 4, 6 };
RenderSprites(spritePriorities);
RenderTilemap<0, 4, 1, 5>();
}
void Ppu::RenderMode7()
{
constexpr uint8_t spritePriorities[4] = { 2, 4, 6, 7 };
RenderSprites(spritePriorities);
RenderTilemapMode7<0, 3, 3>();
if(_state.ExtBgEnabled) {
RenderTilemapMode7<1, 1, 5>();
}
}
void Ppu::RenderScanline()
{
int32_t hPos = GetCycle();
if(hPos <= 255 || _spriteEvalEnd < 255) {
_spriteEvalEnd = std::min(hPos, 255);
if(_spriteEvalStart <= _spriteEvalEnd) {
EvaluateNextLineSprites();
}
_spriteEvalStart = _spriteEvalEnd + 1;
}
if(!_skipRender && (hPos <= 263 || _fetchBgEnd < 263)) {
//Fetch tilemap and tile CHR data, as needed, between H=0 and H=263
_fetchBgEnd = std::min(hPos, 263);
if(_fetchBgStart <= _fetchBgEnd) {
FetchTileData();
}
_fetchBgStart = _fetchBgEnd + 1;
}
//Render the scanline
if(!_skipRender && _drawStartX <= 255 && hPos > 22 && _scanline > 0) {
_drawEndX = std::min(hPos - 22, 255);
if(_state.ForcedVblank) {
//Forced blank, output black
memset(_mainScreenBuffer + _drawStartX, 0, (_drawEndX - _drawStartX + 1) * 2);
memset(_subScreenBuffer + _drawStartX, 0, (_drawEndX - _drawStartX + 1) * 2);
} else {
switch(_state.BgMode) {
case 0: RenderMode0(); break;
case 1: RenderMode1(); break;
case 2: RenderMode2(); break;
case 3: RenderMode3(); break;
case 4: RenderMode4(); break;
case 5: RenderMode5(); break;
case 6: RenderMode6(); break;
case 7: RenderMode7(); break;
}
RenderBgColor();
}
ApplyColorMath();
ApplyBrightness<true>();
ApplyHiResMode();
_drawStartX = _drawEndX + 1;
}
if(hPos >= 270 && !_spriteFetchingDone) {
//Fetch sprite data from OAM and calculated which CHR data needs to be loaded (between H=270 and H=337)
//Fetch sprite CHR data, as needed, between H=272 and H=339
_fetchSpriteEnd = std::min(hPos - 270, 69);
if(_fetchSpriteStart <= _fetchSpriteEnd) {
FetchSpriteData();
}
_fetchSpriteStart = _fetchSpriteEnd + 1;
}
}
void Ppu::RenderBgColor()
{
uint8_t pixelFlags = (_state.ColorMathEnabled & 0x20) ? PixelFlags::AllowColorMath : 0;
for(int x = _drawStartX; x <= _drawEndX; x++) {
if((_mainScreenFlags[x] & 0x0F) == 0) {
_mainScreenBuffer[x] = _cgram[0];
_mainScreenFlags[x] = pixelFlags;
}
if(_subScreenPriority[x] == 0) {
_subScreenBuffer[x] = _cgram[0];
}
}
}
void Ppu::RenderSprites(const uint8_t priority[4])
{
if(!IsRenderRequired(Ppu::SpriteLayerIndex)) {
return;
}
bool drawMain = (bool)(((_state.MainScreenLayers & _configVisibleLayers) >> Ppu::SpriteLayerIndex) & 0x01);
bool drawSub = (bool)(((_state.SubScreenLayers & _configVisibleLayers) >> Ppu::SpriteLayerIndex) & 0x01);
uint8_t mainWindowCount = 0;
uint8_t subWindowCount = 0;
if(_state.WindowMaskMain[Ppu::SpriteLayerIndex]) {
mainWindowCount = (uint8_t)_state.Window[0].ActiveLayers[Ppu::SpriteLayerIndex] + (uint8_t)_state.Window[1].ActiveLayers[Ppu::SpriteLayerIndex];
}
if(_state.WindowMaskSub[Ppu::SpriteLayerIndex]) {
subWindowCount = (uint8_t)_state.Window[0].ActiveLayers[Ppu::SpriteLayerIndex] + (uint8_t)_state.Window[1].ActiveLayers[Ppu::SpriteLayerIndex];
}
for(int x = _drawStartX; x <= _drawEndX; x++) {
if(_spritePriority[x] <= 3) {
uint8_t spritePrio = priority[_spritePriority[x]];
if(drawMain && ((_mainScreenFlags[x] & 0x0F) < spritePrio) && !ProcessMaskWindow<Ppu::SpriteLayerIndex>(mainWindowCount, x)) {
uint16_t paletteRamOffset = 128 + (_spritePalette[x] << 4) + _spriteColors[x];
_mainScreenBuffer[x] = _cgram[paletteRamOffset];
_mainScreenFlags[x] = spritePrio | (((_state.ColorMathEnabled & 0x10) && _spritePalette[x] > 3) ? PixelFlags::AllowColorMath : 0);
}
if(drawSub && (_subScreenPriority[x] < spritePrio) && !ProcessMaskWindow<Ppu::SpriteLayerIndex>(subWindowCount, x)) {
uint16_t paletteRamOffset = 128 + (_spritePalette[x] << 4) + _spriteColors[x];
_subScreenBuffer[x] = _cgram[paletteRamOffset];
_subScreenPriority[x] = spritePrio;
}
}
}
}
template<uint8_t layerIndex, uint8_t bpp, uint8_t normalPriority, uint8_t highPriority, uint16_t basePaletteOffset, bool hiResMode, bool applyMosaic, bool directColorMode>
void Ppu::RenderTilemap()
{
bool drawMain = (bool)(((_state.MainScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01);
bool drawSub = (bool)(((_state.SubScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01);
uint8_t mainWindowCount = _state.WindowMaskMain[layerIndex] ? (uint8_t)_state.Window[0].ActiveLayers[layerIndex] + (uint8_t)_state.Window[1].ActiveLayers[layerIndex] : 0;
uint8_t subWindowCount = _state.WindowMaskSub[layerIndex] ? (uint8_t)_state.Window[0].ActiveLayers[layerIndex] + (uint8_t)_state.Window[1].ActiveLayers[layerIndex] : 0;
uint16_t hScrollOriginal = _state.Layers[layerIndex].HScroll;
uint16_t hScroll = hiResMode ? (hScrollOriginal << 1) : hScrollOriginal;
TileData* tileData = _layerData[layerIndex].Tiles;
uint8_t mosaicCounter = applyMosaic ? (_drawStartX % _state.MosaicSize) : 0;
uint8_t lookupIndex;
uint8_t chrDataOffset;
uint8_t hiresSubColor;
uint8_t pixelFlags = (((_state.ColorMathEnabled >> layerIndex) & 0x01) ? PixelFlags::AllowColorMath : 0);
for(int x = _drawStartX; x <= _drawEndX; x++) {
if(hiResMode) {
lookupIndex = (x + (hScrollOriginal & 0x07)) >> 2;
chrDataOffset = (lookupIndex & 0x01) * bpp / 2;
lookupIndex >>= 1;
} else {
lookupIndex = (x + (hScrollOriginal & 0x07)) >> 3;
}
uint16_t tilemapData = tileData[lookupIndex].TilemapData;
uint16_t* chrData = tileData[lookupIndex].ChrData;
bool hMirror = (tilemapData & 0x4000) != 0;
uint8_t color;
if(hiResMode) {
uint8_t xOffset = ((x << 1) + 1 + hScroll) & 0x07;
uint8_t shift = hMirror ? xOffset : (7 - xOffset);
color = GetTilePixelColor<bpp>(chrData + chrDataOffset, shift);
xOffset = ((x << 1) + hScroll) & 0x07;
shift = hMirror ? xOffset : (7 - xOffset);
hiresSubColor = GetTilePixelColor<bpp>(chrData + chrDataOffset, shift);
} else {
uint8_t xOffset = (x + hScroll) & 0x07;
uint8_t shift = hMirror ? xOffset : (7 - xOffset);
color = GetTilePixelColor<bpp>(chrData, shift);
}
uint8_t paletteIndex = (tilemapData >> 10) & 0x07;
uint8_t priority = (tilemapData & 0x2000) ? highPriority : normalPriority;
if(applyMosaic) {
if(mosaicCounter == 0) {
mosaicCounter = 1;
if(hiResMode) {
color = hiresSubColor;
}
_mosaicColor[layerIndex] = (paletteIndex << 8) | color;
_mosaicPriority[layerIndex] = priority;
} else {
mosaicCounter++;
if(mosaicCounter == _state.MosaicSize) {
mosaicCounter = 0;
}
color = _mosaicColor[layerIndex] & 0xFF;
paletteIndex = _mosaicColor[layerIndex] >> 8;
priority = _mosaicPriority[layerIndex];
if(hiResMode) {
hiresSubColor = color;
}
}
}
if(color > 0) {
uint16_t rgbColor = GetRgbColor<bpp, directColorMode, basePaletteOffset>(paletteIndex, color);
if(drawMain && (_mainScreenFlags[x] & 0x0F) < priority && !ProcessMaskWindow<layerIndex>(mainWindowCount, x)) {
DrawMainPixel(x, rgbColor, priority | pixelFlags);
}
if(!hiResMode && drawSub && _subScreenPriority[x] < priority && !ProcessMaskWindow<layerIndex>(subWindowCount, x)) {
DrawSubPixel(x, rgbColor, priority);
}
}
if(hiResMode) {
if(hiresSubColor > 0 && drawSub && _subScreenPriority[x] < priority && !ProcessMaskWindow<layerIndex>(subWindowCount, x)) {
uint16_t hiresSubRgbColor = GetRgbColor<bpp, directColorMode, basePaletteOffset>(paletteIndex, hiresSubColor);
DrawSubPixel(x, hiresSubRgbColor, priority);
}
}
}
}
template<uint8_t bpp, bool directColorMode, uint8_t basePaletteOffset>
uint16_t Ppu::GetRgbColor(uint8_t paletteIndex, uint8_t colorIndex)
{
if(bpp == 8 && directColorMode) {
return (
((((colorIndex & 0x07) << 1) | (paletteIndex & 0x01)) << 1) |
(((colorIndex & 0x38) | ((paletteIndex & 0x02) << 1)) << 4) |
(((colorIndex & 0xC0) | ((paletteIndex & 0x04) << 3)) << 7)
);
} else if(bpp == 8) {
//Ignore palette bits for 256-color layers
return _cgram[basePaletteOffset + colorIndex];
} else {
return _cgram[basePaletteOffset + paletteIndex * (1 << bpp) + colorIndex];
}
}
bool Ppu::IsRenderRequired(uint8_t layerIndex)
{
if(((_state.MainScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01) {
return true;
}
if(((_state.SubScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01) {
return true;
}
return false;
}
template<uint8_t bpp>
uint8_t Ppu::GetTilePixelColor(const uint16_t chrData[4], const uint8_t shift)
{
uint8_t color;
if(bpp == 2) {
color = (chrData[0] >> shift) & 0x01;
color |= (chrData[0] >> (7 + shift)) & 0x02;
} else if(bpp == 4) {
color = (chrData[0] >> shift) & 0x01;
color |= (chrData[0] >> (7 + shift)) & 0x02;
color |= ((chrData[1] >> shift) & 0x01) << 2;
color |= ((chrData[1] >> (7 + shift)) & 0x02) << 2;
} else if(bpp == 8) {
color = (chrData[0] >> shift) & 0x01;
color |= (chrData[0] >> (7 + shift)) & 0x02;
color |= ((chrData[1] >> shift) & 0x01) << 2;
color |= ((chrData[1] >> (7 + shift)) & 0x02) << 2;
color |= ((chrData[2] >> shift) & 0x01) << 4;
color |= ((chrData[2] >> (7 + shift)) & 0x02) << 4;
color |= ((chrData[3] >> shift) & 0x01) << 6;
color |= ((chrData[3] >> (7 + shift)) & 0x02) << 6;
} else {
throw std::runtime_error("unsupported bpp");
}
return color;
}
template<uint8_t layerIndex, uint8_t normalPriority, uint8_t highPriority, bool applyMosaic, bool directColorMode>
void Ppu::RenderTilemapMode7()
{
uint8_t mainWindowCount = _state.WindowMaskMain[layerIndex] ? (uint8_t)_state.Window[0].ActiveLayers[layerIndex] + (uint8_t)_state.Window[1].ActiveLayers[layerIndex] : 0;
uint8_t subWindowCount = _state.WindowMaskSub[layerIndex] ? (uint8_t)_state.Window[0].ActiveLayers[layerIndex] + (uint8_t)_state.Window[1].ActiveLayers[layerIndex] : 0;
bool drawMain = (bool)(((_state.MainScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01);
bool drawSub = (bool)(((_state.SubScreenLayers & _configVisibleLayers) >> layerIndex) & 0x01);
auto clip = [](int32_t val) { return (val & 0x2000) ? (val | ~0x3ff) : (val & 0x3ff); };
if(_drawStartX == 0) {
//Keep the same scroll offsets for the entire scanline
_state.Mode7.HScrollLatch = _state.Mode7.HScroll;
_state.Mode7.VScrollLatch = _state.Mode7.VScroll;
}
int32_t hScroll = ((int32_t)_state.Mode7.HScrollLatch << 19) >> 19;
int32_t vScroll = ((int32_t)_state.Mode7.VScrollLatch << 19) >> 19;
int32_t centerX = ((int32_t)_state.Mode7.CenterX << 19) >> 19;
int32_t centerY = ((int32_t)_state.Mode7.CenterY << 19) >> 19;
uint16_t realY = _state.Mode7.VerticalMirroring ? (255 - _scanline) : _scanline;
if(applyMosaic) {
//Keep the "scanline" to what it was at the start of this mosaic block
realY -= _state.MosaicSize - _mosaicScanlineCounter;
}
uint8_t mosaicCounter = applyMosaic ? (_drawStartX % _state.MosaicSize) : 0;
int32_t xValue = (
((_state.Mode7.Matrix[0] * clip(hScroll - centerX)) & ~63) +
((_state.Mode7.Matrix[1] * realY) & ~63) +
((_state.Mode7.Matrix[1] * clip(vScroll - centerY)) & ~63) +
(centerX << 8)
);
int32_t yValue = (
((_state.Mode7.Matrix[2] * clip(hScroll - centerX)) & ~63) +
((_state.Mode7.Matrix[3] * realY) & ~63) +
((_state.Mode7.Matrix[3] * clip(vScroll - centerY)) & ~63) +
(centerY << 8)
);
int16_t xStep = _state.Mode7.Matrix[0];
int16_t yStep = _state.Mode7.Matrix[2];
if(_state.Mode7.HorizontalMirroring) {
//Calculate the value at the end of the scanline, and then start going backwards
xValue += xStep * _drawEndX;
yValue += yStep * _drawEndX;
xStep = -xStep;
yStep = -yStep;
}
xValue += xStep * _drawStartX;
yValue += yStep * _drawStartX;
uint8_t pixelFlags = ((_state.ColorMathEnabled >> layerIndex) & 0x01) ? PixelFlags::AllowColorMath : 0;
for(int x = _drawStartX; x <= _drawEndX; x++) {
int32_t xOffset = xValue >> 8;
int32_t yOffset = yValue >> 8;
xValue += xStep;
yValue += yStep;
uint8_t tileIndex;
if(!_state.Mode7.LargeMap) {
yOffset &= 0x3FF;
xOffset &= 0x3FF;
tileIndex = (uint8_t)_vram[((yOffset & ~0x07) << 4) | (xOffset >> 3)];
} else {
if(yOffset < 0 || yOffset > 0x3FF || xOffset < 0 || xOffset > 0x3FF) {
if(_state.Mode7.FillWithTile0) {
tileIndex = 0;
} else {
//Draw nothing for this pixel, we're outside the map
continue;
}
} else {
tileIndex = (uint8_t)_vram[((yOffset & ~0x07) << 4) | (xOffset >> 3)];
}
}
uint16_t colorIndex;
uint8_t priority;
if(layerIndex == 1) {
uint8_t color = _vram[((tileIndex << 6) + ((yOffset & 0x07) << 3) + (xOffset & 0x07))] >> 8;
priority = (color & 0x80) ? highPriority : normalPriority;
colorIndex = (color & 0x7F);
} else {
priority = normalPriority;
colorIndex = _vram[((tileIndex << 6) + ((yOffset & 0x07) << 3) + (xOffset & 0x07))] >> 8;
}
if(applyMosaic) {
if(mosaicCounter == 0) {
mosaicCounter = 1;
_mosaicColor[layerIndex] = colorIndex;
_mosaicPriority[layerIndex] = priority;
} else {
mosaicCounter++;
if(mosaicCounter == _state.MosaicSize) {
mosaicCounter = 0;
}
colorIndex = _mosaicColor[layerIndex];
priority = _mosaicPriority[layerIndex];
}
}
if(colorIndex > 0) {
uint16_t paletteColor;
if(directColorMode) {
paletteColor = ((colorIndex & 0x07) << 2) | ((colorIndex & 0x38) << 4) | ((colorIndex & 0xC0) << 7);
} else {
paletteColor = _cgram[colorIndex];
}
if(drawMain && (_mainScreenFlags[x] & 0x0F) < priority && !ProcessMaskWindow<layerIndex>(mainWindowCount, x)) {
DrawMainPixel(x, paletteColor, priority | pixelFlags);
}
if(drawSub && _subScreenPriority[x] < priority && !ProcessMaskWindow<layerIndex>(subWindowCount, x)) {
DrawSubPixel(x, paletteColor, priority);
}
}
}
}
void Ppu::DrawMainPixel(uint8_t x, uint16_t color, uint8_t flags)
{
_mainScreenBuffer[x] = color;
_mainScreenFlags[x] = flags;
}
void Ppu::DrawSubPixel(uint8_t x, uint16_t color, uint8_t priority)
{
_subScreenBuffer[x] = color;
_subScreenPriority[x] = priority;
}
void Ppu::ApplyColorMath()
{
uint8_t activeWindowCount = (uint8_t)_state.Window[0].ActiveLayers[Ppu::ColorWindowIndex] + (uint8_t)_state.Window[1].ActiveLayers[Ppu::ColorWindowIndex];
bool hiResMode = _state.HiResMode || _state.BgMode == 5 || _state.BgMode == 6;
if(hiResMode) {
for(int x = _drawStartX; x <= _drawEndX; x++) {
bool isInsideWindow = ProcessMaskWindow<Ppu::ColorWindowIndex>(activeWindowCount, x);
//Keep original subscreen color, which is used to apply color math to the main screen after
uint16_t subPixel = _subScreenBuffer[x];
//Apply the color math based on the previous main pixel
uint16_t prevMainPixel = x > 0 ? _mainScreenBuffer[x - 1] : 0;
int prevX = x > 0 ? x - 1 : 0;
ApplyColorMathToPixel(_subScreenBuffer[x], prevMainPixel, prevX, isInsideWindow);
ApplyColorMathToPixel(_mainScreenBuffer[x], subPixel, x, isInsideWindow);
}
} else {
for(int x = _drawStartX; x <= _drawEndX; x++) {
bool isInsideWindow = ProcessMaskWindow<Ppu::ColorWindowIndex>(activeWindowCount, x);
ApplyColorMathToPixel(_mainScreenBuffer[x], _subScreenBuffer[x], x, isInsideWindow);
}
}
}
void Ppu::ApplyColorMathToPixel(uint16_t &pixelA, uint16_t pixelB, int x, bool isInsideWindow)
{
uint8_t halfShift = (uint8_t)_state.ColorMathHalveResult;
//Set color to black as needed based on clip mode
switch(_state.ColorMathClipMode) {
default:
case ColorWindowMode::Never: break;
case ColorWindowMode::OutsideWindow:
if(!isInsideWindow) {
pixelA = 0;
halfShift = 0;
}
break;
case ColorWindowMode::InsideWindow:
if(isInsideWindow) {
pixelA = 0;
halfShift = 0;
}
break;
case ColorWindowMode::Always: pixelA = 0; break;
}
if(!(_mainScreenFlags[x] & PixelFlags::AllowColorMath)) {
//Color math doesn't apply to this pixel
return;
}
//Prevent color math as needed based on mode
switch(_state.ColorMathPreventMode) {
default:
case ColorWindowMode::Never: break;
case ColorWindowMode::OutsideWindow:
if(!isInsideWindow) {
return;
}
break;
case ColorWindowMode::InsideWindow:
if(isInsideWindow) {
return;
}
break;
case ColorWindowMode::Always: return;
}
uint16_t otherPixel;
if(_state.ColorMathAddSubscreen) {
if(_subScreenPriority[x] > 0) {
otherPixel = pixelB;
} else {
//there's nothing in the subscreen at this pixel, use the fixed color and disable halve operation
otherPixel = _state.FixedColor;
halfShift = 0;
}
} else {
otherPixel = _state.FixedColor;
}
constexpr unsigned int mask = 0x1F;
if(_state.ColorMathSubstractMode) {
uint16_t r = std::max((int)((pixelA & mask) - (otherPixel & mask)), 0) >> halfShift;
uint16_t g = std::max((int)(((pixelA >> 5U) & mask) - ((otherPixel >> 5U) & mask)), 0) >> halfShift;
uint16_t b = std::max((int)(((pixelA >> 10U) & mask) - ((otherPixel >> 10U) & mask)), 0) >> halfShift;
pixelA = r | (g << 5U) | (b << 10U);
} else {
uint16_t r = std::min(((pixelA & mask) + (otherPixel & mask)) >> halfShift, mask);
uint16_t g = std::min((((pixelA >> 5U) & mask) + ((otherPixel >> 5U) & mask)) >> halfShift, mask);
uint16_t b = std::min((((pixelA >> 10U) & mask) + ((otherPixel >> 10U) & mask)) >> halfShift, mask);
pixelA = r | (g << 5U) | (b << 10U);
}
}
template<bool forMainScreen>
void Ppu::ApplyBrightness()
{
if(_state.ScreenBrightness != 15) {
for(int x = _drawStartX; x <= _drawEndX; x++) {
uint16_t &pixel = (forMainScreen ? _mainScreenBuffer : _subScreenBuffer)[x];
uint16_t r = (pixel & 0x1F) * _state.ScreenBrightness / 15;
uint16_t g = ((pixel >> 5) & 0x1F) * _state.ScreenBrightness / 15;
uint16_t b = ((pixel >> 10) & 0x1F) * _state.ScreenBrightness / 15;
pixel = r | (g << 5) | (b << 10);
}
}
}
void Ppu::ConvertToHiRes()
{
bool useHighResOutput = _useHighResOutput || IsDoubleWidth() || _state.ScreenInterlace;
if(!useHighResOutput || _useHighResOutput == useHighResOutput || _scanline >= _vblankStartScanline || _scanline == 0) {
return;
}
//Convert standard res picture to high resolution when the PPU starts drawing in high res mid frame
_useHighResOutput = useHighResOutput;
uint16_t scanline = _overscanFrame ? (_scanline - 1) : (_scanline + 6);
if(_drawStartX > 0) {
for(int x = 0; x < _drawStartX; x++) {
_currentBuffer[(scanline << 10) + (x << 1)] = _currentBuffer[(scanline << 8) + x];
_currentBuffer[(scanline << 10) + (x << 1) + 1] = _currentBuffer[(scanline << 8) + x];
}
memcpy(_currentBuffer + (scanline << 10) + 512, _currentBuffer + (scanline << 10), 512 * sizeof(uint16_t));
}
for(int i = scanline - 1; i >= 0; i--) {
for(int x = 0; x < 256; x++) {
_currentBuffer[(i << 10) + (x << 1)] = _currentBuffer[(i << 8) + x];
_currentBuffer[(i << 10) + (x << 1) + 1] = _currentBuffer[(i << 8) + x];
}
memcpy(_currentBuffer + (i << 10) + 512, _currentBuffer + (i << 10), 512 * sizeof(uint16_t));
}
}
void Ppu::ApplyHiResMode()
{
//When overscan mode is off, center the 224-line picture in the center of the 239-line output buffer
uint16_t scanline = _overscanFrame ? (_scanline - 1) : (_scanline + 6);
if(!_useHighResOutput) {
memcpy(_currentBuffer + (scanline << 8) + _drawStartX, _mainScreenBuffer + _drawStartX, (_drawEndX - _drawStartX + 1) << 1);
} else {
_interlacedFrame |= _state.ScreenInterlace;
uint32_t screenY = _state.ScreenInterlace ? (_oddFrame ? ((scanline << 1) + 1) : (scanline << 1)) : (scanline << 1);
uint32_t baseAddr = (screenY << 9);
if(IsDoubleWidth()) {
ApplyBrightness<false>();
for(int x = _drawStartX; x <= _drawEndX; x++) {
_currentBuffer[baseAddr + (x << 1)] = _subScreenBuffer[x];
_currentBuffer[baseAddr + (x << 1) + 1] = _mainScreenBuffer[x];
}
} else {
for(int x = _drawStartX; x <= _drawEndX; x++) {
_currentBuffer[baseAddr + (x << 1)] = _mainScreenBuffer[x];
_currentBuffer[baseAddr + (x << 1) + 1] = _mainScreenBuffer[x];
}
}
if(!_state.ScreenInterlace) {
//Copy this line's content to the next line (between the current start & end bounds)
memcpy(
_currentBuffer + baseAddr + 512 + (_drawStartX << 1),
_currentBuffer + baseAddr + (_drawStartX << 1),
(_drawEndX - _drawStartX + 1) << 2
);
}
}
}
template<uint8_t layerIndex>
bool Ppu::ProcessMaskWindow(uint8_t activeWindowCount, int x)
{
switch(activeWindowCount) {
case 1:
if(_state.Window[0].ActiveLayers[layerIndex]) {
return _state.Window[0].PixelNeedsMasking<layerIndex>(x);
}
return _state.Window[1].PixelNeedsMasking<layerIndex>(x);
case 2:
switch(_state.MaskLogic[layerIndex]) {
default:
case WindowMaskLogic::Or: return _state.Window[0].PixelNeedsMasking<layerIndex>(x) | _state.Window[1].PixelNeedsMasking<layerIndex>(x);
case WindowMaskLogic::And: return _state.Window[0].PixelNeedsMasking<layerIndex>(x) & _state.Window[1].PixelNeedsMasking<layerIndex>(x);
case WindowMaskLogic::Xor: return _state.Window[0].PixelNeedsMasking<layerIndex>(x) ^ _state.Window[1].PixelNeedsMasking<layerIndex>(x);
case WindowMaskLogic::Xnor: return !(_state.Window[0].PixelNeedsMasking<layerIndex>(x) ^ _state.Window[1].PixelNeedsMasking<layerIndex>(x));
}
}
return false;
}
void Ppu::ProcessWindowMaskSettings(uint8_t value, uint8_t offset)
{
_state.Window[0].ActiveLayers[0 + offset] = (value & 0x02) != 0;
_state.Window[0].ActiveLayers[1 + offset] = (value & 0x20) != 0;
_state.Window[0].InvertedLayers[0 + offset] = (value & 0x01) != 0;
_state.Window[0].InvertedLayers[1 + offset] = (value & 0x10) != 0;
_state.Window[1].ActiveLayers[0 + offset] = (value & 0x08) != 0;
_state.Window[1].ActiveLayers[1 + offset] = (value & 0x80) != 0;
_state.Window[1].InvertedLayers[0 + offset] = (value & 0x04) != 0;
_state.Window[1].InvertedLayers[1 + offset] = (value & 0x40) != 0;
}
void Ppu::SendFrame()
{
uint16_t width = _useHighResOutput ? 512 : 256;
uint16_t height = _useHighResOutput ? 478 : 239;
if(!_overscanFrame) {
//Clear the top 7 and bottom 8 rows
int top = (_useHighResOutput ? 14 : 7);
int bottom = (_useHighResOutput ? 16 : 8);
memset(_currentBuffer, 0, width * top * sizeof(uint16_t));
memset(_currentBuffer + width * (height - bottom), 0, width * bottom * sizeof(uint16_t));
}
_console->GetNotificationManager()->SendNotification(ConsoleNotificationType::PpuFrameDone);
bool isRewinding = _console->GetRewindManager()->IsRewinding();
#ifdef LIBRETRO
_console->GetVideoDecoder()->UpdateFrameSync(_currentBuffer, width, height, _frameCount, isRewinding);
#else
if(isRewinding || _interlacedFrame) {
_console->GetVideoDecoder()->UpdateFrameSync(_currentBuffer, width, height, _frameCount, isRewinding);
} else {
_console->GetVideoDecoder()->UpdateFrame(_currentBuffer, width, height, _frameCount);
}
#endif
if(!_skipRender) {
_frameSkipTimer.Reset();
}
}
bool Ppu::IsHighResOutput()
{
return _useHighResOutput;
}
uint16_t* Ppu::GetScreenBuffer()
{
return _currentBuffer;
}
uint16_t* Ppu::GetPreviousScreenBuffer()
{
return _currentBuffer == _outputBuffers[0] ? _outputBuffers[1] : _outputBuffers[0];
}
uint8_t* Ppu::GetVideoRam()
{
return (uint8_t*)_vram;
}
uint8_t* Ppu::GetCgRam()
{
return (uint8_t*)_cgram;
}
uint8_t* Ppu::GetSpriteRam()
{
return (uint8_t*)_oamRam;
}
bool Ppu::IsDoubleHeight()
{
return _state.ScreenInterlace && (_state.BgMode == 5 || _state.BgMode == 6);
}
bool Ppu::IsDoubleWidth()
{
return _state.HiResMode || _state.BgMode == 5 || _state.BgMode == 6;
}
void Ppu::SetLocationLatchRequest(uint16_t x, uint16_t y)
{
//Used by super scope
_latchRequest = true;
_latchRequestX = x;
_latchRequestY = y;
}
void Ppu::ProcessLocationLatchRequest()
{
//Used by super scope
if(_latchRequest) {
uint16_t cycle = GetCycle();
uint16_t scanline = GetRealScanline();
if(scanline > _latchRequestY || (_latchRequestY == scanline && cycle >= _latchRequestX)) {
_latchRequest = false;
_horizontalLocation = _latchRequestX;
_verticalLocation = _latchRequestY;
_locationLatched = true;
}
}
}
void Ppu::LatchLocationValues()
{
_horizontalLocation = GetCycle();
_verticalLocation = GetRealScanline();
_locationLatched = true;
}
void Ppu::UpdateOamAddress()
{
_internalOamAddress = (_state.OamRamAddress << 1);
}
uint16_t Ppu::GetOamAddress()
{
if(_state.ForcedVblank || _scanline >= _vblankStartScanline) {
return _internalOamAddress;
} else {
if(_memoryManager->GetHClock() <= 255 * 4) {
return _oamEvaluationIndex << 2;
} else {
return _oamTimeIndex << 2;
}
}
}
void Ppu::UpdateVramReadBuffer()
{
uint16_t addr = GetVramAddress();
_state.VramReadBuffer = _vram[addr];
}
uint16_t Ppu::GetVramAddress()
{
uint16_t addr = _state.VramAddress;
switch(_state.VramAddressRemapping) {
default:
case 0: return addr;
case 1: return (addr & 0xFF00) | ((addr & 0xE0) >> 5) | ((addr & 0x1F) << 3);
case 2: return (addr & 0xFE00) | ((addr & 0x1C0) >> 6) | ((addr & 0x3F) << 3);
case 3: return (addr & 0xFC00) | ((addr & 0x380) >> 7) | ((addr & 0x7F) << 3);
}
}
uint8_t Ppu::Read(uint16_t addr)
{
if(_scanline < _vblankStartScanline) {
RenderScanline();
}
switch(addr) {
case 0x2134:
_state.Ppu1OpenBus = ((int16_t)_state.Mode7.Matrix[0] * ((int16_t)_state.Mode7.Matrix[1] >> 8)) & 0xFF;
return _state.Ppu1OpenBus;
case 0x2135:
_state.Ppu1OpenBus = (((int16_t)_state.Mode7.Matrix[0] * ((int16_t)_state.Mode7.Matrix[1] >> 8)) >> 8) & 0xFF;
return _state.Ppu1OpenBus;
case 0x2136:
_state.Ppu1OpenBus = (((int16_t)_state.Mode7.Matrix[0] * ((int16_t)_state.Mode7.Matrix[1] >> 8)) >> 16) & 0xFF;
return _state.Ppu1OpenBus;
case 0x2137:
//SLHV - Software Latch for H/V Counter
//Latch values on read, and return open bus
if(_regs->GetIoPortOutput() & 0x80) {
//Only latch H/V counters if bit 7 of $4201 is set.
LatchLocationValues();
}
break;
case 0x2138: {
//OAMDATAREAD - Data for OAM read
//When trying to read/write during rendering, the internal address used by the PPU's sprite rendering is used
uint16_t oamAddr = GetOamAddress();
uint8_t value;
if(oamAddr < 512) {
value = _oamRam[oamAddr];
_console->ProcessPpuRead(oamAddr, value, SnesMemoryType::SpriteRam);
} else {
value = _oamRam[0x200 | (oamAddr & 0x1F)];
_console->ProcessPpuRead(0x200 | (oamAddr & 0x1F), value, SnesMemoryType::SpriteRam);
}
_internalOamAddress = (_internalOamAddress + 1) & 0x3FF;
_state.Ppu1OpenBus = value;
return value;
}
case 0x2139: {
//VMDATALREAD - VRAM Data Read low byte
uint8_t returnValue = (uint8_t)_state.VramReadBuffer;
_console->ProcessPpuRead(GetVramAddress(), returnValue, SnesMemoryType::VideoRam);
if(!_state.VramAddrIncrementOnSecondReg) {
UpdateVramReadBuffer();
_state.VramAddress = (_state.VramAddress + _state.VramIncrementValue) & 0x7FFF;
}
_state.Ppu1OpenBus = returnValue;
return returnValue;
}
case 0x213A: {
//VMDATAHREAD - VRAM Data Read high byte
uint8_t returnValue = (uint8_t)(_state.VramReadBuffer >> 8);
_console->ProcessPpuRead(GetVramAddress() + 1, returnValue, SnesMemoryType::VideoRam);
if(_state.VramAddrIncrementOnSecondReg) {
UpdateVramReadBuffer();
_state.VramAddress = (_state.VramAddress + _state.VramIncrementValue) & 0x7FFF;
}
_state.Ppu1OpenBus = returnValue;
return returnValue;
}
case 0x213B: {
//CGDATAREAD - CGRAM Data read
uint8_t value;
if(_state.CgramAddressLatch){
value = ((_cgram[_state.CgramAddress] >> 8) & 0x7F) | (_state.Ppu2OpenBus & 0x80);
_state.CgramAddress++;
_console->ProcessPpuRead((_state.CgramAddress >> 1) + 1, value, SnesMemoryType::CGRam);
} else {
value = (uint8_t)_cgram[_state.CgramAddress];
_console->ProcessPpuRead(_state.CgramAddress >> 1, value, SnesMemoryType::CGRam);
}
_state.CgramAddressLatch = !_state.CgramAddressLatch;
_state.Ppu2OpenBus = value;
return value;
}
case 0x213C: {
//OPHCT - Horizontal Scanline Location
ProcessLocationLatchRequest();
uint8_t value;
if(_horizontalLocToggle) {
//"Note that the value read is only 9 bits: bits 1-7 of the high byte are PPU2 Open Bus."
value = ((_horizontalLocation & 0x100) >> 8) | (_state.Ppu2OpenBus & 0xFE);
} else {
value = _horizontalLocation & 0xFF;
}
_state.Ppu2OpenBus = value;
_horizontalLocToggle = !_horizontalLocToggle;
return value;
}
case 0x213D: {
//OPVCT - Vertical Scanline Location
ProcessLocationLatchRequest();
uint8_t value;
if(_verticalLocationToggle) {
//"Note that the value read is only 9 bits: bits 1-7 of the high byte are PPU2 Open Bus."
value = ((_verticalLocation & 0x100) >> 8) | (_state.Ppu2OpenBus & 0xFE);
} else {
value = _verticalLocation & 0xFF;
}
_state.Ppu2OpenBus = value;
_verticalLocationToggle = !_verticalLocationToggle;
return value;
}
case 0x213E: {
//STAT77 - PPU Status Flag and Version
uint8_t value = (
(_timeOver ? 0x80 : 0) |
(_rangeOver ? 0x40 : 0) |
(_state.Ppu1OpenBus & 0x10) |
0x01 //PPU (5c77) chip version
);
_state.Ppu1OpenBus = value;
return value;
}
case 0x213F: {
//STAT78 - PPU Status Flag and Version
ProcessLocationLatchRequest();
uint8_t value = (
(_oddFrame ? 0x80 : 0) |
(_locationLatched ? 0x40 : 0) |
(_state.Ppu2OpenBus & 0x20) |
(_console->GetRegion() == ConsoleRegion::Pal ? 0x10 : 0) |
0x03 //PPU (5c78) chip version
);
if(_regs->GetIoPortOutput() & 0x80) {
_locationLatched = false;
//"The high/low selector is reset to <20>elow<6F>f when $213F is read" (the selector is NOT reset when the counter is latched)
_horizontalLocToggle = false;
_verticalLocationToggle = false;
}
_state.Ppu2OpenBus = value;
return value;
}
default:
LogDebug("[Debug] Unimplemented register read: " + HexUtilities::ToHex(addr));
break;
}
uint16_t reg = addr & 0x210F;
if((reg >= 0x2104 && reg <= 0x2106) || (reg >= 0x2108 && reg <= 0x210A)) {
//Registers matching $21x4-6 or $21x8-A (where x is 0-2) return the last value read from any of the PPU1 registers $2134-6, $2138-A, or $213E.
return _state.Ppu1OpenBus;
}
return _console->GetMemoryManager()->GetOpenBus();
}
void Ppu::Write(uint32_t addr, uint8_t value)
{
if(_scanline < _vblankStartScanline) {
RenderScanline();
}
switch(addr) {
case 0x2100:
if(_state.ForcedVblank && _scanline == _nmiScanline) {
//"writing this register on the first line of V-Blank (225 or 240, depending on overscan) when force blank is currently active causes the OAM Address Reset to occur."
UpdateOamAddress();
}
_state.ForcedVblank = (value & 0x80) != 0;
_state.ScreenBrightness = value & 0x0F;
break;
case 0x2101:
_state.OamMode = (value & 0xE0) >> 5;
_state.OamBaseAddress = (value & 0x07) << 13;
_state.OamAddressOffset = (((value & 0x18) >> 3) + 1) << 12;
break;
case 0x2102:
_state.OamRamAddress = (_state.OamRamAddress & 0x100) | value;
UpdateOamAddress();
break;
case 0x2103:
_state.OamRamAddress = (_state.OamRamAddress & 0xFF) | ((value & 0x01) << 8);
UpdateOamAddress();
_state.EnableOamPriority = (value & 0x80) != 0;
break;
case 0x2104: {
//When trying to read/write during rendering, the internal address used by the PPU's sprite rendering is used
//This is approximated by _oamRenderAddress (but is not cycle accurate) - needed for Uniracers
uint16_t oamAddr = GetOamAddress();
if(oamAddr < 512) {
if(oamAddr & 0x01) {
_console->ProcessPpuWrite(oamAddr - 1, _oamWriteBuffer, SnesMemoryType::SpriteRam);
_oamRam[oamAddr - 1] = _oamWriteBuffer;
_console->ProcessPpuWrite(oamAddr, value, SnesMemoryType::SpriteRam);
_oamRam[oamAddr] = value;
} else {
_oamWriteBuffer = value;
}
}
if(!_state.ForcedVblank && _scanline < _nmiScanline) {
//During rendering the high table is also written to when writing to OAM
oamAddr = 0x200 | ((oamAddr & 0x1F0) >> 4);
}
if(oamAddr >= 512) {
uint16_t address = 0x200 | (oamAddr & 0x1F);
if((oamAddr & 0x01) == 0) {
_oamWriteBuffer = value;
}
_console->ProcessPpuWrite(address, value, SnesMemoryType::SpriteRam);
_oamRam[address] = value;
}
_internalOamAddress = (_internalOamAddress + 1) & 0x3FF;
break;
}
case 0x2105:
if(_state.BgMode != (value & 0x07)) {
LogDebug("[Debug] Entering mode: " + std::to_string(value & 0x07) + " (SL: " + std::to_string(_scanline) + ")");
}
_state.BgMode = value & 0x07;
ConvertToHiRes();
_state.Mode1Bg3Priority = (value & 0x08) != 0;
_state.Layers[0].LargeTiles = (value & 0x10) != 0;
_state.Layers[1].LargeTiles = (value & 0x20) != 0;
_state.Layers[2].LargeTiles = (value & 0x40) != 0;
_state.Layers[3].LargeTiles = (value & 0x80) != 0;
break;
case 0x2106: {
//MOSAIC - Screen Pixelation
_state.MosaicSize = ((value & 0xF0) >> 4) + 1;
uint8_t mosaicEnabled = value & 0x0F;
if(!_state.MosaicEnabled && mosaicEnabled) {
//"If this register is set during the frame, the <20>starting scanline is the current scanline, otherwise it is the first visible scanline of the frame."
//This is only done when mosaic is turned on from an off state (FF6 mosaic effect looks wrong otherwise)
//FF6's mosaic effect is broken on some screens without this.
_mosaicScanlineCounter = _state.MosaicSize + 1;
}
_state.MosaicEnabled = mosaicEnabled;
break;
}
case 0x2107: case 0x2108: case 0x2109: case 0x210A:
//BG 1-4 Tilemap Address and Size (BG1SC, BG2SC, BG3SC, BG4SC)
_state.Layers[addr - 0x2107].TilemapAddress = (value & 0x7C) << 8;
_state.Layers[addr - 0x2107].DoubleWidth = (value & 0x01) != 0;
_state.Layers[addr - 0x2107].DoubleHeight = (value & 0x02) != 0;
break;
case 0x210B: case 0x210C:
//BG1+2 / BG3+4 Chr Address (BG12NBA / BG34NBA)
_state.Layers[(addr - 0x210B) * 2].ChrAddress = (value & 0x07) << 12;
_state.Layers[(addr - 0x210B) * 2 + 1].ChrAddress = (value & 0x70) << 8;
break;
case 0x210D:
//M7HOFS - Mode 7 BG Horizontal Scroll
//BG1HOFS - BG1 Horizontal Scroll
_state.Mode7.HScroll = ((value << 8) | (_state.Mode7.ValueLatch)) & 0x1FFF;
_state.Mode7.ValueLatch = value;
//no break, keep executing to set the matching BG1 HScroll register, too
case 0x210F: case 0x2111: case 0x2113:
//BGXHOFS - BG1/2/3/4 Horizontal Scroll
_state.Layers[(addr - 0x210D) >> 1].HScroll = ((value << 8) | (_hvScrollLatchValue & ~0x07) | (_hScrollLatchValue & 0x07)) & 0x3FF;
_hvScrollLatchValue = value;
_hScrollLatchValue = value;
break;
case 0x210E:
//M7VOFS - Mode 7 BG Vertical Scroll
//BG1VOFS - BG1 Vertical Scroll
_state.Mode7.VScroll = ((value << 8) | (_state.Mode7.ValueLatch)) & 0x1FFF;
_state.Mode7.ValueLatch = value;
//no break, keep executing to set the matching BG1 HScroll register, too
case 0x2110: case 0x2112: case 0x2114:
//BGXVOFS - BG1/2/3/4 Vertical Scroll
_state.Layers[(addr - 0x210E) >> 1].VScroll = ((value << 8) | _hvScrollLatchValue) & 0x3FF;
_hvScrollLatchValue = value;
break;
case 0x2115:
//VMAIN - Video Port Control
switch(value & 0x03) {
case 0: _state.VramIncrementValue = 1; break;
case 1: _state.VramIncrementValue = 32; break;
case 2:
case 3: _state.VramIncrementValue = 128; break;
}
_state.VramAddressRemapping = (value & 0x0C) >> 2;
_state.VramAddrIncrementOnSecondReg = (value & 0x80) != 0;
break;
case 0x2116:
//VMADDL - VRAM Address low byte
_state.VramAddress = (_state.VramAddress & 0x7F00) | value;
UpdateVramReadBuffer();
break;
case 0x2117:
//VMADDH - VRAM Address high byte
_state.VramAddress = (_state.VramAddress & 0x00FF) | ((value & 0x7F) << 8);
UpdateVramReadBuffer();
break;
case 0x2118:
//VMDATAL - VRAM Data Write low byte
if(_scanline >= _nmiScanline || _state.ForcedVblank) {
//Only write the value if in vblank or forced blank (writes to VRAM outside vblank/forced blank are not allowed)
_console->ProcessPpuWrite(GetVramAddress() << 1, value, SnesMemoryType::VideoRam);
_vram[GetVramAddress()] = value | (_vram[GetVramAddress()] & 0xFF00);
}
//The VRAM address is incremented even outside of vblank/forced blank
if(!_state.VramAddrIncrementOnSecondReg) {
_state.VramAddress = (_state.VramAddress + _state.VramIncrementValue) & 0x7FFF;
}
break;
case 0x2119:
//VMDATAH - VRAM Data Write high byte
if(_scanline >= _nmiScanline || _state.ForcedVblank) {
//Only write the value if in vblank or forced blank (writes to VRAM outside vblank/forced blank are not allowed)
_console->ProcessPpuWrite((GetVramAddress() << 1) + 1, value, SnesMemoryType::VideoRam);
_vram[GetVramAddress()] = (value << 8) | (_vram[GetVramAddress()] & 0xFF);
}
//The VRAM address is incremented even outside of vblank/forced blank
if(_state.VramAddrIncrementOnSecondReg) {
_state.VramAddress = (_state.VramAddress + _state.VramIncrementValue) & 0x7FFF;
}
break;
case 0x211A:
//M7SEL - Mode 7 Settings
_state.Mode7.LargeMap = (value & 0x80) != 0;
_state.Mode7.FillWithTile0 = (value & 0x40) != 0;
_state.Mode7.HorizontalMirroring = (value & 0x01) != 0;
_state.Mode7.VerticalMirroring = (value & 0x02) != 0;
break;
case 0x211B: case 0x211C: case 0x211D: case 0x211E:
//M7A/B/C/D - Mode 7 Matrix A/B/C/D (A/B are also used with $2134/6)
_state.Mode7.Matrix[addr - 0x211B] = (value << 8) | _state.Mode7.ValueLatch;
_state.Mode7.ValueLatch = value;
break;
case 0x211F:
//M7X - Mode 7 Center X
_state.Mode7.CenterX = ((value << 8) | _state.Mode7.ValueLatch);
_state.Mode7.ValueLatch = value;
break;
case 0x2120:
//M7Y - Mode 7 Center Y
_state.Mode7.CenterY = ((value << 8) | _state.Mode7.ValueLatch);
_state.Mode7.ValueLatch = value;
break;
case 0x2121:
//CGRAM Address(CGADD)
_state.CgramAddress = value;
_state.CgramAddressLatch = false;
break;
case 0x2122:
//CGRAM Data write (CGDATA)
if(_state.CgramAddressLatch) {
//MSB ignores the 7th bit (colors are 15-bit only)
_console->ProcessPpuWrite(_state.CgramAddress >> 1, _state.CgramWriteBuffer, SnesMemoryType::CGRam);
_console->ProcessPpuWrite((_state.CgramAddress >> 1) + 1, value & 0x7F, SnesMemoryType::CGRam);
_cgram[_state.CgramAddress] = _state.CgramWriteBuffer | ((value & 0x7F) << 8);
_state.CgramAddress++;
} else {
_state.CgramWriteBuffer = value;
}
_state.CgramAddressLatch = !_state.CgramAddressLatch;
break;
case 0x2123:
//W12SEL - Window Mask Settings for BG1 and BG2
ProcessWindowMaskSettings(value, 0);
break;
case 0x2124:
//W34SEL - Window Mask Settings for BG3 and BG4
ProcessWindowMaskSettings(value, 2);
break;
case 0x2125:
//WOBJSEL - Window Mask Settings for OBJ and Color Window
ProcessWindowMaskSettings(value, 4);
break;
case 0x2126:
//WH0 - Window 1 Left Position
_state.Window[0].Left = value;
break;
case 0x2127:
//WH1 - Window 1 Right Position
_state.Window[0].Right = value;
break;
case 0x2128:
//WH2 - Window 2 Left Position
_state.Window[1].Left = value;
break;
case 0x2129:
//WH3 - Window 2 Right Position
_state.Window[1].Right = value;
break;
case 0x212A:
//WBGLOG - Window mask logic for BG
_state.MaskLogic[0] = (WindowMaskLogic)(value & 0x03);
_state.MaskLogic[1] = (WindowMaskLogic)((value >> 2) & 0x03);
_state.MaskLogic[2] = (WindowMaskLogic)((value >> 4) & 0x03);
_state.MaskLogic[3] = (WindowMaskLogic)((value >> 6) & 0x03);
break;
case 0x212B:
//WOBJLOG - Window mask logic for OBJs and Color Window
_state.MaskLogic[4] = (WindowMaskLogic)((value >> 0) & 0x03);
_state.MaskLogic[5] = (WindowMaskLogic)((value >> 2) & 0x03);
break;
case 0x212C:
//TM - Main Screen Designation
_state.MainScreenLayers = value & 0x1F;
break;
case 0x212D:
//TS - Subscreen Designation
_state.SubScreenLayers = value & 0x1F;
break;
case 0x212E:
//TMW - Window Mask Designation for the Main Screen
for(int i = 0; i < 5; i++) {
_state.WindowMaskMain[i] = ((value >> i) & 0x01) != 0;
}
break;
case 0x212F:
//TSW - Window Mask Designation for the Subscreen
for(int i = 0; i < 5; i++) {
_state.WindowMaskSub[i] = ((value >> i) & 0x01) != 0;
}
break;
case 0x2130:
//CGWSEL - Color Addition Select
_state.ColorMathClipMode = (ColorWindowMode)((value >> 6) & 0x03);
_state.ColorMathPreventMode = (ColorWindowMode)((value >> 4) & 0x03);
_state.ColorMathAddSubscreen = (value & 0x02) != 0;
_state.DirectColorMode = (value & 0x01) != 0;
break;
case 0x2131:
//CGADSUB - Color math designation
_state.ColorMathEnabled = value & 0x3F;
_state.ColorMathSubstractMode = (value & 0x80) != 0;
_state.ColorMathHalveResult = (value & 0x40) != 0;
break;
case 0x2132:
//COLDATA - Fixed Color Data
if(value & 0x80) { //B
_state.FixedColor = (_state.FixedColor & ~0x7C00) | ((value & 0x1F) << 10);
}
if(value & 0x40) { //G
_state.FixedColor = (_state.FixedColor & ~0x3E0) | ((value & 0x1F) << 5);
}
if(value & 0x20) { //R
_state.FixedColor = (_state.FixedColor & ~0x1F) | (value & 0x1F);
}
break;
case 0x2133: {
//SETINI - Screen Mode/Video Select
//_externalSync = (value & 0x80) != 0; //NOT USED
_state.ExtBgEnabled = (value & 0x40) != 0;
_state.HiResMode = (value & 0x08) != 0;
_state.OverscanMode = (value & 0x04) != 0;
_state.ObjInterlace = (value & 0x02) != 0;
bool interlace = (value & 0x01) != 0;
if(_state.ScreenInterlace != interlace) {
_state.ScreenInterlace = interlace;
if(_scanline >= _vblankStartScanline && interlace) {
//Clear buffer when turning on interlace mode during vblank
memset(GetPreviousScreenBuffer(), 0, 512 * 478 * sizeof(uint16_t));
}
}
ConvertToHiRes();
break;
}
default:
LogDebug("[Debug] Unimplemented register write: " + HexUtilities::ToHex(addr) + " = " + HexUtilities::ToHex(value));
break;
}
}
void Ppu::Serialize(Serializer &s)
{
uint16_t unused_oamRenderAddress = 0;
s.Stream(
_state.ForcedVblank, _state.ScreenBrightness, _scanline, _frameCount, _drawStartX, _drawEndX, _state.BgMode,
_state.Mode1Bg3Priority, _state.MainScreenLayers, _state.SubScreenLayers, _state.VramAddress, _state.VramIncrementValue, _state.VramAddressRemapping,
_state.VramAddrIncrementOnSecondReg, _state.VramReadBuffer, _state.Ppu1OpenBus, _state.Ppu2OpenBus, _state.CgramAddress, _state.MosaicSize, _state.MosaicEnabled,
_mosaicScanlineCounter, _state.OamMode, _state.OamBaseAddress, _state.OamAddressOffset, _state.OamRamAddress, _state.EnableOamPriority,
_internalOamAddress, _oamWriteBuffer, _timeOver, _rangeOver, _state.HiResMode, _state.ScreenInterlace, _state.ObjInterlace,
_state.OverscanMode, _state.DirectColorMode, _state.ColorMathClipMode, _state.ColorMathPreventMode, _state.ColorMathAddSubscreen, _state.ColorMathEnabled,
_state.ColorMathSubstractMode, _state.ColorMathHalveResult, _state.FixedColor, _hvScrollLatchValue, _hScrollLatchValue,
_horizontalLocation, _horizontalLocToggle, _verticalLocation, _verticalLocationToggle, _locationLatched,
_state.MaskLogic[0], _state.MaskLogic[1], _state.MaskLogic[2], _state.MaskLogic[3], _state.MaskLogic[4], _state.MaskLogic[5],
_state.WindowMaskMain[0], _state.WindowMaskMain[1], _state.WindowMaskMain[2], _state.WindowMaskMain[3], _state.WindowMaskMain[4],
_state.WindowMaskSub[0], _state.WindowMaskSub[1], _state.WindowMaskSub[2], _state.WindowMaskSub[3], _state.WindowMaskSub[4],
_state.Mode7.CenterX, _state.Mode7.CenterY, _state.ExtBgEnabled, _state.Mode7.FillWithTile0, _state.Mode7.HorizontalMirroring,
_state.Mode7.HScroll, _state.Mode7.LargeMap, _state.Mode7.Matrix[0], _state.Mode7.Matrix[1], _state.Mode7.Matrix[2], _state.Mode7.Matrix[3],
_state.Mode7.ValueLatch, _state.Mode7.VerticalMirroring, _state.Mode7.VScroll, unused_oamRenderAddress, _oddFrame, _vblankStartScanline,
_state.CgramAddressLatch, _state.CgramWriteBuffer, _nmiScanline, _vblankEndScanline, _adjustedVblankEndScanline, _baseVblankEndScanline,
_overclockEnabled
);
for(int i = 0; i < 4; i++) {
s.Stream(
_state.Layers[i].ChrAddress, _state.Layers[i].DoubleHeight, _state.Layers[i].DoubleWidth, _state.Layers[i].HScroll,
_state.Layers[i].LargeTiles, _state.Layers[i].TilemapAddress, _state.Layers[i].VScroll
);
}
for(int i = 0; i < 2; i++) {
s.Stream(
_state.Window[i].ActiveLayers[0], _state.Window[i].ActiveLayers[1], _state.Window[i].ActiveLayers[2], _state.Window[i].ActiveLayers[3], _state.Window[i].ActiveLayers[4], _state.Window[i].ActiveLayers[5],
_state.Window[i].InvertedLayers[0], _state.Window[i].InvertedLayers[1], _state.Window[i].InvertedLayers[2], _state.Window[i].InvertedLayers[3], _state.Window[i].InvertedLayers[4], _state.Window[i].InvertedLayers[5],
_state.Window[i].Left, _state.Window[i].Right
);
}
s.StreamArray(_vram, Ppu::VideoRamSize >> 1);
s.StreamArray(_oamRam, Ppu::SpriteRamSize);
s.StreamArray(_cgram, Ppu::CgRamSize >> 1);
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 33; j++) {
s.Stream(
_layerData[i].Tiles[j].ChrData[0], _layerData[i].Tiles[j].ChrData[1], _layerData[i].Tiles[j].ChrData[2], _layerData[i].Tiles[j].ChrData[3],
_layerData[i].Tiles[j].TilemapData, _layerData[i].Tiles[j].VScroll
);
}
}
s.Stream(_hOffset, _vOffset, _fetchBgStart, _fetchBgEnd, _fetchSpriteStart, _fetchSpriteEnd);
}
void Ppu::RandomizeState()
{
_state.ScreenBrightness = _settings->GetRandomValue(0x0F);
_state.Mode7.CenterX = _settings->GetRandomValue(0xFFFF);
_state.Mode7.CenterY = _settings->GetRandomValue(0xFFFF);
_state.Mode7.FillWithTile0 = _settings->GetRandomBool();
_state.Mode7.HorizontalMirroring = _settings->GetRandomBool();
_state.Mode7.HScroll = _settings->GetRandomValue(0x1FFF);
_state.Mode7.HScrollLatch = _settings->GetRandomValue(0x1FFF);
_state.Mode7.LargeMap = _settings->GetRandomBool();
_state.Mode7.Matrix[0] = _settings->GetRandomValue(0xFFFF);
_state.Mode7.Matrix[1] = _settings->GetRandomValue(0xFFFF);
_state.Mode7.Matrix[2] = _settings->GetRandomValue(0xFFFF);
_state.Mode7.Matrix[3] = _settings->GetRandomValue(0xFFFF);
_state.Mode7.ValueLatch = _settings->GetRandomValue(0xFF);
_state.Mode7.VerticalMirroring = _settings->GetRandomBool();
_state.Mode7.VScroll = _settings->GetRandomValue(0x1FFF);
_state.Mode7.VScrollLatch = _settings->GetRandomValue(0x1FFF);
_state.BgMode = _settings->GetRandomValue(7);
_state.Mode1Bg3Priority = _settings->GetRandomBool();
_state.MainScreenLayers = _settings->GetRandomValue(0x1F);
_state.SubScreenLayers = _settings->GetRandomValue(0x1F);
for(int i = 0; i < 4; i++) {
_state.Layers[i].TilemapAddress = _settings->GetRandomValue(0x1F) << 10;
_state.Layers[i].ChrAddress = _settings->GetRandomValue(0x07) << 12;
_state.Layers[i].HScroll = _settings->GetRandomValue(0x1FFF);
_state.Layers[i].VScroll = _settings->GetRandomValue(0x1FFF);
_state.Layers[i].DoubleWidth = _settings->GetRandomBool();
_state.Layers[i].DoubleHeight = _settings->GetRandomBool();
_state.Layers[i].LargeTiles = _settings->GetRandomBool();
}
for(int i = 0; i < 2; i++) {
_state.Window[i].Left = _settings->GetRandomValue(0xFF);
_state.Window[i].Right = _settings->GetRandomValue(0xFF);
for(int j = 0; j < 6; j++) {
_state.Window[i].ActiveLayers[j] = _settings->GetRandomBool();
_state.Window[i].InvertedLayers[j] = _settings->GetRandomBool();
}
}
for(int i = 0; i < 6; i++) {
_state.MaskLogic[i] = (WindowMaskLogic)_settings->GetRandomValue(3);
}
for(int i = 0; i < 5; i++) {
_state.WindowMaskMain[i] = _settings->GetRandomBool();
_state.WindowMaskSub[i] = _settings->GetRandomBool();
}
_state.VramAddress = _settings->GetRandomValue(0x7FFF);
switch(_settings->GetRandomValue(0x03)) {
case 0: _state.VramIncrementValue = 1; break;
case 1: _state.VramIncrementValue = 32; break;
case 2: case 3: _state.VramIncrementValue = 128; break;
}
_state.VramAddressRemapping = _settings->GetRandomValue(0x03);
_state.VramAddrIncrementOnSecondReg = _settings->GetRandomBool();
_state.VramReadBuffer = _settings->GetRandomValue(0xFFFF);
_state.Ppu1OpenBus = _settings->GetRandomValue(0xFF);
_state.Ppu2OpenBus = _settings->GetRandomValue(0xFF);
_state.CgramAddress = _settings->GetRandomValue(0xFF);
_state.CgramWriteBuffer = _settings->GetRandomValue(0xFF);
_state.CgramAddressLatch = _settings->GetRandomBool();
_state.MosaicSize = _settings->GetRandomValue(0x0F) + 1;
_state.MosaicEnabled = _settings->GetRandomValue(0x0F);
_state.OamRamAddress = _settings->GetRandomValue(0x1FF);
_state.OamMode = _settings->GetRandomValue(0x07);
_state.OamBaseAddress = _settings->GetRandomValue(0x07) << 13;
_state.OamAddressOffset = (_settings->GetRandomValue(0x03) + 1) << 12;
_state.EnableOamPriority = _settings->GetRandomBool();
_state.ExtBgEnabled = _settings->GetRandomBool();
_state.HiResMode = _settings->GetRandomBool();
_state.ScreenInterlace = _settings->GetRandomBool();
_state.ObjInterlace = _settings->GetRandomBool();
_state.OverscanMode = _settings->GetRandomBool();
_state.DirectColorMode = _settings->GetRandomBool();
_state.ColorMathClipMode = (ColorWindowMode)_settings->GetRandomValue(3);
_state.ColorMathPreventMode = (ColorWindowMode)_settings->GetRandomValue(3);
_state.ColorMathAddSubscreen = _settings->GetRandomBool();
_state.ColorMathEnabled = _settings->GetRandomValue(0x3F);
_state.ColorMathSubstractMode = _settings->GetRandomBool();
_state.ColorMathHalveResult = _settings->GetRandomBool();
_state.FixedColor = _settings->GetRandomValue(0x7FFF);
}
/* Everything below this point is used to select the proper arguments for templates */
template<uint8_t layerIndex, uint8_t bpp, uint8_t normalPriority, uint8_t highPriority, uint16_t basePaletteOffset, bool hiResMode, bool applyMosaic>
void Ppu::RenderTilemap()
{
if(_state.DirectColorMode) {
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, hiResMode, applyMosaic, true>();
} else {
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, hiResMode, applyMosaic, false>();
}
}
template<uint8_t layerIndex, uint8_t bpp, uint8_t normalPriority, uint8_t highPriority, uint16_t basePaletteOffset, bool hiResMode>
void Ppu::RenderTilemap()
{
bool applyMosaic = ((_state.MosaicEnabled >> layerIndex) & 0x01) != 0 && (_state.MosaicSize > 1 || _state.BgMode == 5 || _state.BgMode == 6);
if(applyMosaic) {
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, hiResMode, true>();
} else {
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, hiResMode, false>();
}
}
template<uint8_t layerIndex, uint8_t bpp, uint8_t normalPriority, uint8_t highPriority, uint16_t basePaletteOffset>
void Ppu::RenderTilemap()
{
if(!IsRenderRequired(layerIndex)) {
return;
}
if(_state.BgMode == 5 || _state.BgMode == 6) {
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, true>();
} else {
RenderTilemap<layerIndex, bpp, normalPriority, highPriority, basePaletteOffset, false>();
}
}
template<uint8_t layerIndex, uint8_t normalPriority, uint8_t highPriority>
void Ppu::RenderTilemapMode7()
{
if(!IsRenderRequired(layerIndex)) {
return;
}
bool applyMosaic = ((_state.MosaicEnabled >> layerIndex) & 0x01) != 0;
if(applyMosaic) {
RenderTilemapMode7<layerIndex, normalPriority, highPriority, true>();
} else {
RenderTilemapMode7<layerIndex, normalPriority, highPriority, false>();
}
}
template<uint8_t layerIndex, uint8_t normalPriority, uint8_t highPriority, bool applyMosaic>
void Ppu::RenderTilemapMode7()
{
if(_state.DirectColorMode) {
RenderTilemapMode7<layerIndex, normalPriority, highPriority, applyMosaic, true>();
} else {
RenderTilemapMode7<layerIndex, normalPriority, highPriority, applyMosaic, false>();
}
}