Mesen-S/Core/Sa1Cpu.cpp
Sour 1d6253d2e5 SA-1: Fixed SA-1 vector logic
Reads done by the code should return the values at the read address, rather than returning the vector register value (fixes Gradius/Contra 3 SA-1 romhacks that are known to work on hardware)
2020-03-01 18:24:24 -05:00

145 lines
3.6 KiB
C++

#include "stdafx.h"
#include "../Utilities/Serializer.h"
#include "CpuTypes.h"
#include "Sa1Cpu.h"
#include "Console.h"
#include "MemoryManager.h"
#include "EventType.h"
#include "Sa1.h"
#include "MemoryMappings.h"
#define Cpu Sa1Cpu
#include "Cpu.Instructions.h"
#include "Cpu.Shared.h"
#undef Cpu
Sa1Cpu::Sa1Cpu(Sa1* sa1, Console* console)
{
_sa1 = sa1;
_console = console;
}
Sa1Cpu::~Sa1Cpu()
{
}
void Sa1Cpu::Exec()
{
_immediateMode = false;
switch(_state.StopState) {
case CpuStopState::Running: RunOp(); break;
case CpuStopState::Stopped:
//STP was executed, CPU no longer executes any code
_state.CycleCount++;
return;
case CpuStopState::WaitingForIrq:
//WAI
Idle();
if(_state.IrqSource || _state.NeedNmi) {
Idle();
_state.StopState = CpuStopState::Running;
}
break;
}
//Use the state of the IRQ/NMI flags on the previous cycle to determine if an IRQ is processed or not
if(_state.PrevNeedNmi) {
_state.NeedNmi = false;
uint32_t originalPc = GetProgramAddress(_state.PC);
ProcessInterrupt(_state.EmulationMode ? Sa1Cpu::LegacyNmiVector : Sa1Cpu::NmiVector, true);
_console->ProcessInterrupt<CpuType::Sa1>(originalPc, GetProgramAddress(_state.PC), true);
} else if(_state.PrevIrqSource) {
uint32_t originalPc = GetProgramAddress(_state.PC);
ProcessInterrupt(_state.EmulationMode ? Sa1Cpu::LegacyIrqVector : Sa1Cpu::IrqVector, true);
_console->ProcessInterrupt<CpuType::Sa1>(originalPc, GetProgramAddress(_state.PC), false);
}
}
void Sa1Cpu::Idle()
{
//Do not apply any delay to internal cycles: "internal SA-1 cycles are still 10.74 MHz."
_state.CycleCount++;
DetectNmiSignalEdge();
UpdateIrqNmiFlags();
}
void Sa1Cpu::IdleEndJump()
{
IMemoryHandler* handler = _sa1->GetMemoryMappings()->GetHandler(_state.PC);
if(handler && handler->GetMemoryType() == SnesMemoryType::PrgRom) {
//Jumps/returns in PRG ROM take an extra cycle
_state.CycleCount++;
if(_sa1->GetSnesCpuMemoryType() == SnesMemoryType::PrgRom) {
//Add an extra wait cycle if a conflict occurs at the same time
_state.CycleCount++;
}
}
}
void Sa1Cpu::IdleTakeBranch()
{
if(_state.PC & 0x01) {
IMemoryHandler* handler = _sa1->GetMemoryMappings()->GetHandler(_state.PC);
if(handler && handler->GetMemoryType() == SnesMemoryType::PrgRom) {
//Branches to an odd address take an extra cycle
_state.CycleCount++;
}
}
}
bool Sa1Cpu::IsAccessConflict()
{
return _sa1->GetSnesCpuMemoryType() == _sa1->GetSa1MemoryType() && _sa1->GetSa1MemoryType() != SnesMemoryType::Register;
}
void Sa1Cpu::ProcessCpuCycle(uint32_t addr)
{
_state.CycleCount++;
if(_sa1->GetSa1MemoryType() == SnesMemoryType::SaveRam) {
//BWRAM (save ram) access takes 2 cycles
_state.CycleCount++;
if(IsAccessConflict()) {
_state.CycleCount += 2;
}
} else if(IsAccessConflict()) {
//Add a wait cycle when a conflict occurs between both CPUs
_state.CycleCount++;
if(_sa1->GetSa1MemoryType() == SnesMemoryType::Sa1InternalRam && _sa1->IsSnesCpuFastRomSpeed()) {
//If it's an IRAM access during FastROM access (speed = 6), add another wait cycle
_state.CycleCount++;
}
}
DetectNmiSignalEdge();
UpdateIrqNmiFlags();
}
uint8_t Sa1Cpu::Read(uint32_t addr, MemoryOperationType type)
{
ProcessCpuCycle(addr);
return _sa1->ReadSa1(addr, type);
}
void Sa1Cpu::Write(uint32_t addr, uint8_t value, MemoryOperationType type)
{
ProcessCpuCycle(addr);
_sa1->WriteSa1(addr, value, type);
}
uint16_t Sa1Cpu::ReadVector(uint16_t vector)
{
return _sa1->ReadVector(vector);
}
uint16_t Sa1Cpu::GetResetVector()
{
return _sa1->ReadVector(Sa1Cpu::ResetVector);
}
void Sa1Cpu::IncreaseCycleCount(uint64_t cycleCount)
{
_state.CycleCount += cycleCount;
}