Mesen-X/Core/CPU.cpp
Ben Holley 813aabb04a Fix CPU::StreamState extraScanlinesAfterNmi argument
Previously the CPU::StreamState function passed the
extraScanlinesBeforeNmi value twice to Stream().

Change the second argument to extraScanlinesAfterNmi instead.
2021-02-20 12:31:44 -06:00

488 lines
18 KiB
C++

#include "stdafx.h"
#include <random>
#include <assert.h>
#include "CPU.h"
#include "PPU.h"
#include "APU.h"
#include "DeltaModulationChannel.h"
#include "Debugger.h"
#include "NsfMapper.h"
#include "Console.h"
CPU::CPU(shared_ptr<Console> console)
{
_console = console;
_memoryManager = _console->GetMemoryManager();
Func opTable[] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
&CPU::BRK, &CPU::ORA, &CPU::HLT, &CPU::SLO, &CPU::NOP, &CPU::ORA, &CPU::ASL_Memory, &CPU::SLO, &CPU::PHP, &CPU::ORA, &CPU::ASL_Acc, &CPU::AAC, &CPU::NOP, &CPU::ORA, &CPU::ASL_Memory, &CPU::SLO, //0
&CPU::BPL, &CPU::ORA, &CPU::HLT, &CPU::SLO, &CPU::NOP, &CPU::ORA, &CPU::ASL_Memory, &CPU::SLO, &CPU::CLC, &CPU::ORA, &CPU::NOP, &CPU::SLO, &CPU::NOP, &CPU::ORA, &CPU::ASL_Memory, &CPU::SLO, //1
&CPU::JSR, &CPU::AND, &CPU::HLT, &CPU::RLA, &CPU::BIT, &CPU::AND, &CPU::ROL_Memory, &CPU::RLA, &CPU::PLP, &CPU::AND, &CPU::ROL_Acc, &CPU::AAC, &CPU::BIT, &CPU::AND, &CPU::ROL_Memory, &CPU::RLA, //2
&CPU::BMI, &CPU::AND, &CPU::HLT, &CPU::RLA, &CPU::NOP, &CPU::AND, &CPU::ROL_Memory, &CPU::RLA, &CPU::SEC, &CPU::AND, &CPU::NOP, &CPU::RLA, &CPU::NOP, &CPU::AND, &CPU::ROL_Memory, &CPU::RLA, //3
&CPU::RTI, &CPU::EOR, &CPU::HLT, &CPU::SRE, &CPU::NOP, &CPU::EOR, &CPU::LSR_Memory, &CPU::SRE, &CPU::PHA, &CPU::EOR, &CPU::LSR_Acc, &CPU::ASR, &CPU::JMP_Abs, &CPU::EOR, &CPU::LSR_Memory, &CPU::SRE, //4
&CPU::BVC, &CPU::EOR, &CPU::HLT, &CPU::SRE, &CPU::NOP, &CPU::EOR, &CPU::LSR_Memory, &CPU::SRE, &CPU::CLI, &CPU::EOR, &CPU::NOP, &CPU::SRE, &CPU::NOP, &CPU::EOR, &CPU::LSR_Memory, &CPU::SRE, //5
&CPU::RTS, &CPU::ADC, &CPU::HLT, &CPU::RRA, &CPU::NOP, &CPU::ADC, &CPU::ROR_Memory, &CPU::RRA, &CPU::PLA, &CPU::ADC, &CPU::ROR_Acc, &CPU::ARR, &CPU::JMP_Ind, &CPU::ADC, &CPU::ROR_Memory, &CPU::RRA, //6
&CPU::BVS, &CPU::ADC, &CPU::HLT, &CPU::RRA, &CPU::NOP, &CPU::ADC, &CPU::ROR_Memory, &CPU::RRA, &CPU::SEI, &CPU::ADC, &CPU::NOP, &CPU::RRA, &CPU::NOP, &CPU::ADC, &CPU::ROR_Memory, &CPU::RRA, //7
&CPU::NOP, &CPU::STA, &CPU::NOP, &CPU::SAX, &CPU::STY, &CPU::STA, &CPU::STX, &CPU::SAX, &CPU::DEY, &CPU::NOP, &CPU::TXA, &CPU::UNK, &CPU::STY, &CPU::STA, &CPU::STX, &CPU::SAX, //8
&CPU::BCC, &CPU::STA, &CPU::HLT, &CPU::AXA, &CPU::STY, &CPU::STA, &CPU::STX, &CPU::SAX, &CPU::TYA, &CPU::STA, &CPU::TXS, &CPU::TAS, &CPU::SYA, &CPU::STA, &CPU::SXA, &CPU::AXA, //9
&CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, &CPU::TAY, &CPU::LDA, &CPU::TAX, &CPU::ATX, &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, //A
&CPU::BCS, &CPU::LDA, &CPU::HLT, &CPU::LAX, &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, &CPU::CLV, &CPU::LDA, &CPU::TSX, &CPU::LAS, &CPU::LDY, &CPU::LDA, &CPU::LDX, &CPU::LAX, //B
&CPU::CPY, &CPU::CPA, &CPU::NOP, &CPU::DCP, &CPU::CPY, &CPU::CPA, &CPU::DEC, &CPU::DCP, &CPU::INY, &CPU::CPA, &CPU::DEX, &CPU::AXS, &CPU::CPY, &CPU::CPA, &CPU::DEC, &CPU::DCP, //C
&CPU::BNE, &CPU::CPA, &CPU::HLT, &CPU::DCP, &CPU::NOP, &CPU::CPA, &CPU::DEC, &CPU::DCP, &CPU::CLD, &CPU::CPA, &CPU::NOP, &CPU::DCP, &CPU::NOP, &CPU::CPA, &CPU::DEC, &CPU::DCP, //D
&CPU::CPX, &CPU::SBC, &CPU::NOP, &CPU::ISB, &CPU::CPX, &CPU::SBC, &CPU::INC, &CPU::ISB, &CPU::INX, &CPU::SBC, &CPU::NOP, &CPU::SBC, &CPU::CPX, &CPU::SBC, &CPU::INC, &CPU::ISB, //E
&CPU::BEQ, &CPU::SBC, &CPU::HLT, &CPU::ISB, &CPU::NOP, &CPU::SBC, &CPU::INC, &CPU::ISB, &CPU::SED, &CPU::SBC, &CPU::NOP, &CPU::ISB, &CPU::NOP, &CPU::SBC, &CPU::INC, &CPU::ISB //F
};
typedef AddrMode M;
AddrMode addrMode[] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
M::Imp, M::IndX, M::None, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Acc, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //0
M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//1
M::Abs, M::IndX, M::None, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Acc, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //2
M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//3
M::Imp, M::IndX, M::None, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Acc, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //4
M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//5
M::Imp, M::IndX, M::None, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Acc, M::Imm, M::Ind, M::Abs, M::Abs, M::Abs, //6
M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//7
M::Imm, M::IndX, M::Imm, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Imp, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //8
M::Rel, M::IndYW, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroY, M::ZeroY, M::Imp, M::AbsYW,M::Imp, M::AbsYW,M::AbsXW,M::AbsXW,M::AbsYW,M::AbsYW,//9
M::Imm, M::IndX, M::Imm, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Imp, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //A
M::Rel, M::IndY, M::None, M::IndY, M::ZeroX, M::ZeroX, M::ZeroY, M::ZeroY, M::Imp, M::AbsY, M::Imp, M::AbsY, M::AbsX, M::AbsX, M::AbsY, M::AbsY, //B
M::Imm, M::IndX, M::Imm, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Imp, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //C
M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//D
M::Imm, M::IndX, M::Imm, M::IndX, M::Zero, M::Zero, M::Zero, M::Zero, M::Imp, M::Imm, M::Imp, M::Imm, M::Abs, M::Abs, M::Abs, M::Abs, //E
M::Rel, M::IndY, M::None, M::IndYW, M::ZeroX, M::ZeroX, M::ZeroX, M::ZeroX, M::Imp, M::AbsY, M::Imp, M::AbsYW,M::AbsX, M::AbsX, M::AbsXW,M::AbsXW,//F
};
memcpy(_opTable, opTable, sizeof(opTable));
memcpy(_addrMode, addrMode, sizeof(addrMode));
_instAddrMode = AddrMode::None;
_state = {};
_cycleCount = 0;
_operand = 0;
_spriteDmaTransfer = false;
_spriteDmaOffset = 0;
_needHalt = false;
_ppuOffset = 0;
_startClockCount = 6;
_endClockCount = 6;
_masterClock = 0;
_dmcDmaRunning = false;
_cpuWrite = false;
_irqMask = 0;
_state = {};
_prevRunIrq = false;
_runIrq = false;
}
void CPU::Reset(bool softReset, NesModel model)
{
_state.NMIFlag = false;
_state.IRQFlag = 0;
_spriteDmaTransfer = false;
_spriteDmaOffset = 0;
_needHalt = false;
_dmcDmaRunning = false;
_lastCrashWarning = 0;
//Used by NSF code to disable Frame Counter & DMC interrupts
_irqMask = 0xFF;
//Use _memoryManager->Read() directly to prevent clocking the PPU/APU when setting PC at reset
_state.PC = _memoryManager->Read(CPU::ResetVector) | _memoryManager->Read(CPU::ResetVector+1) << 8;
_state.DebugPC = _state.PC;
_state.PreviousDebugPC = _state.PC;
if(softReset) {
SetFlags(PSFlags::Interrupt);
_state.SP -= 0x03;
} else {
_state.A = 0;
_state.SP = 0xFD;
_state.X = 0;
_state.Y = 0;
_state.PS = PSFlags::Interrupt;
_runIrq = false;
}
uint8_t ppuDivider;
uint8_t cpuDivider;
switch(model) {
default:
case NesModel::NTSC:
ppuDivider = 4;
cpuDivider = 12;
break;
case NesModel::PAL:
ppuDivider = 5;
cpuDivider = 16;
break;
case NesModel::Dendy:
ppuDivider = 5;
cpuDivider = 15;
break;
}
_cycleCount = -1;
_masterClock = 0;
uint8_t cpuOffset = 0;
if(_console->GetSettings()->CheckFlag(EmulationFlags::RandomizeCpuPpuAlignment)) {
std::random_device rd;
std::mt19937 mt(rd());
std::uniform_int_distribution<> distPpu(0, ppuDivider - 1);
std::uniform_int_distribution<> distCpu(0, cpuDivider - 1);
_ppuOffset = distPpu(mt);
cpuOffset += distCpu(mt);
string ppuAlignment = " PPU: " + std::to_string(_ppuOffset) + "/" + std::to_string(ppuDivider - 1);
string cpuAlignment = " CPU: " + std::to_string(cpuOffset) + "/" + std::to_string(cpuDivider - 1);
MessageManager::Log("CPU/PPU alignment -" + ppuAlignment + cpuAlignment);
} else {
_ppuOffset = 1;
cpuOffset = 0;
}
_masterClock += cpuDivider + cpuOffset;
//The CPU takes 8 cycles before it starts executing the ROM's code after a reset/power up
for(int i = 0; i < 8; i++) {
StartCpuCycle(true);
EndCpuCycle(true);
}
}
void CPU::Exec()
{
uint8_t opCode = GetOPCode();
_instAddrMode = _addrMode[opCode];
_operand = FetchOperand();
(this->*_opTable[opCode])();
if(_prevRunIrq || _prevNeedNmi) {
IRQ();
}
}
void CPU::IRQ()
{
#ifndef DUMMYCPU
uint16_t originalPc = PC();
#endif
DummyRead(); //fetch opcode (and discard it - $00 (BRK) is forced into the opcode register instead)
DummyRead(); //read next instruction byte (actually the same as above, since PC increment is suppressed. Also discarded.)
Push((uint16_t)(PC()));
if(_needNmi) {
_needNmi = false;
Push((uint8_t)(PS() | PSFlags::Reserved));
SetFlags(PSFlags::Interrupt);
SetPC(MemoryReadWord(CPU::NMIVector));
#ifndef DUMMYCPU
_console->DebugAddTrace("NMI");
_console->DebugProcessInterrupt(originalPc, _state.PC, true);
#endif
} else {
Push((uint8_t)(PS() | PSFlags::Reserved));
SetFlags(PSFlags::Interrupt);
SetPC(MemoryReadWord(CPU::IRQVector));
#ifndef DUMMYCPU
_console->DebugAddTrace("IRQ");
_console->DebugProcessInterrupt(originalPc, _state.PC, false);
#endif
}
}
void CPU::BRK() {
Push((uint16_t)(PC() + 1));
uint8_t flags = PS() | PSFlags::Break | PSFlags::Reserved;
if(_needNmi) {
_needNmi = false;
Push((uint8_t)flags);
SetFlags(PSFlags::Interrupt);
SetPC(MemoryReadWord(CPU::NMIVector));
#ifndef DUMMYCPU
_console->DebugAddTrace("NMI");
#endif
} else {
Push((uint8_t)flags);
SetFlags(PSFlags::Interrupt);
SetPC(MemoryReadWord(CPU::IRQVector));
#ifndef DUMMYCPU
_console->DebugAddTrace("IRQ");
#endif
}
//Ensure we don't start an NMI right after running a BRK instruction (first instruction in IRQ handler must run first - needed for nmi_and_brk test)
_prevNeedNmi = false;
}
void CPU::MemoryWrite(uint16_t addr, uint8_t value, MemoryOperationType operationType)
{
#ifdef DUMMYCPU
if(operationType == MemoryOperationType::Write || operationType == MemoryOperationType::DummyWrite) {
_writeAddresses[_writeCounter] = addr;
_isDummyWrite[_writeCounter] = operationType == MemoryOperationType::DummyWrite;
_writeValue[_writeCounter] = value;
_writeCounter++;
}
#else
_cpuWrite = true;
StartCpuCycle(false);
_memoryManager->Write(addr, value, operationType);
EndCpuCycle(false);
_cpuWrite = false;
#endif
}
uint8_t CPU::MemoryRead(uint16_t addr, MemoryOperationType operationType) {
#ifdef DUMMYCPU
uint8_t value = _memoryManager->DebugRead(addr);
if(operationType == MemoryOperationType::Read || operationType == MemoryOperationType::DummyRead) {
_readAddresses[_readCounter] = addr;
_readValue[_readCounter] = value;
_isDummyRead[_readCounter] = operationType == MemoryOperationType::DummyRead;
_readCounter++;
}
return value;
#else
ProcessPendingDma(addr);
StartCpuCycle(true);
uint8_t value = _memoryManager->Read(addr, operationType);
EndCpuCycle(true);
return value;
#endif
}
uint16_t CPU::FetchOperand()
{
switch(_instAddrMode) {
case AddrMode::Acc:
case AddrMode::Imp: DummyRead(); return 0;
case AddrMode::Imm:
case AddrMode::Rel: return GetImmediate();
case AddrMode::Zero: return GetZeroAddr();
case AddrMode::ZeroX: return GetZeroXAddr();
case AddrMode::ZeroY: return GetZeroYAddr();
case AddrMode::Ind: return GetIndAddr();
case AddrMode::IndX: return GetIndXAddr();
case AddrMode::IndY: return GetIndYAddr(false);
case AddrMode::IndYW: return GetIndYAddr(true);
case AddrMode::Abs: return GetAbsAddr();
case AddrMode::AbsX: return GetAbsXAddr(false);
case AddrMode::AbsXW: return GetAbsXAddr(true);
case AddrMode::AbsY: return GetAbsYAddr(false);
case AddrMode::AbsYW: return GetAbsYAddr(true);
default: break;
}
#if !defined(LIBRETRO) && !defined(DUMMYCPU)
if(_lastCrashWarning == 0 || _cycleCount - _lastCrashWarning > 5000000) {
MessageManager::DisplayMessage("Error", "GameCrash", "Invalid OP code - CPU crashed.");
_lastCrashWarning = _cycleCount;
}
if(_console->GetSettings()->CheckFlag(EmulationFlags::BreakOnCrash)) {
//When "Break on Crash" is enabled, open the debugger and break immediately if a crash occurs
_console->GetDebugger(true)->BreakImmediately(BreakSource::BreakOnCpuCrash);
}
if(_console->IsNsf()) {
//Don't stop emulation on CPU crash when playing NSFs, reset cpu instead
_console->Reset(true);
return 0;
} else {
return 0;
}
#else
return 0;
#endif
}
void CPU::EndCpuCycle(bool forRead)
{
_masterClock += forRead ? (_endClockCount + 1) : (_endClockCount - 1);
_console->GetPpu()->Run(_masterClock - _ppuOffset);
//"The internal signal goes high during φ1 of the cycle that follows the one where the edge is detected,
//and stays high until the NMI has been handled. "
_prevNeedNmi = _needNmi;
//"This edge detector polls the status of the NMI line during φ2 of each CPU cycle (i.e., during the
//second half of each cycle) and raises an internal signal if the input goes from being high during
//one cycle to being low during the next"
if(!_prevNmiFlag && _state.NMIFlag) {
_needNmi = true;
}
_prevNmiFlag = _state.NMIFlag;
//"it's really the status of the interrupt lines at the end of the second-to-last cycle that matters."
//Keep the irq lines values from the previous cycle. The before-to-last cycle's values will be used
_prevRunIrq = _runIrq;
_runIrq = ((_state.IRQFlag & _irqMask) > 0 && !CheckFlag(PSFlags::Interrupt));
}
void CPU::StartCpuCycle(bool forRead)
{
_masterClock += forRead ? (_startClockCount - 1) : (_startClockCount + 1);
_cycleCount++;
_console->GetPpu()->Run(_masterClock - _ppuOffset);
_console->ProcessCpuClock();
}
void CPU::ProcessPendingDma(uint16_t readAddress)
{
if(!_needHalt) {
return;
}
//"If this cycle is a read, hijack the read, discard the value, and prevent all other actions that occur on this cycle (PC not incremented, etc)"
StartCpuCycle(true);
_memoryManager->Read(readAddress, MemoryOperationType::DummyRead);
EndCpuCycle(true);
_needHalt = false;
uint16_t spriteDmaCounter = 0;
uint8_t spriteReadAddr = 0;
uint8_t readValue = 0;
bool skipDummyReads = (readAddress == 0x4016 || readAddress == 0x4017);
auto processCycle = [this] {
//Sprite DMA cycles count as halt/dummy cycles for the DMC DMA when both run at the same time
if(_needHalt) {
_needHalt = false;
} else if(_needDummyRead) {
_needDummyRead = false;
}
StartCpuCycle(true);
};
while(_dmcDmaRunning || _spriteDmaTransfer) {
bool getCycle = (_cycleCount & 0x01) == 0;
if(getCycle) {
if(_dmcDmaRunning && !_needHalt && !_needDummyRead) {
//DMC DMA is ready to read a byte (both halt and dummy read cycles were performed before this)
processCycle();
readValue = _memoryManager->Read(_console->GetApu()->GetDmcReadAddress(), MemoryOperationType::DmcRead);
EndCpuCycle(true);
_console->GetApu()->SetDmcReadBuffer(readValue);
_dmcDmaRunning = false;
} else if(_spriteDmaTransfer) {
//DMC DMA is not running, or not ready, run sprite DMA
processCycle();
readValue = _memoryManager->Read(_spriteDmaOffset * 0x100 + spriteReadAddr);
EndCpuCycle(true);
spriteReadAddr++;
spriteDmaCounter++;
} else {
//DMC DMA is running, but not ready (need halt/dummy read) and sprite DMA isn't runnnig, perform a dummy read
assert(_needHalt || _needDummyRead);
processCycle();
if(!skipDummyReads) {
_memoryManager->Read(readAddress, MemoryOperationType::DummyRead);
}
EndCpuCycle(true);
}
} else {
if(_spriteDmaTransfer && (spriteDmaCounter & 0x01)) {
//Sprite DMA write cycle (only do this if a sprite dma read was performed last cycle)
processCycle();
_memoryManager->Write(0x2004, readValue, MemoryOperationType::Write);
EndCpuCycle(true);
spriteDmaCounter++;
if(spriteDmaCounter == 0x200) {
_spriteDmaTransfer = false;
}
} else {
//Align to read cycle before starting sprite DMA (or align to perform DMC read)
processCycle();
if(!skipDummyReads) {
_memoryManager->Read(readAddress, MemoryOperationType::DummyRead);
}
EndCpuCycle(true);
}
}
}
}
void CPU::RunDMATransfer(uint8_t offsetValue)
{
_spriteDmaTransfer = true;
_spriteDmaOffset = offsetValue;
_needHalt = true;
}
void CPU::StartDmcTransfer()
{
_dmcDmaRunning = true;
_needDummyRead = true;
_needHalt = true;
}
uint32_t CPU::GetClockRate(NesModel model)
{
switch(model) {
default:
case NesModel::NTSC: return CPU::ClockRateNtsc; break;
case NesModel::PAL: return CPU::ClockRatePal; break;
case NesModel::Dendy: return CPU::ClockRateDendy; break;
}
}
void CPU::SetMasterClockDivider(NesModel region)
{
switch(region) {
default:
case NesModel::NTSC:
_startClockCount = 6;
_endClockCount = 6;
break;
case NesModel::PAL:
_startClockCount = 8;
_endClockCount = 8;
break;
case NesModel::Dendy:
_startClockCount = 7;
_endClockCount = 8;
break;
}
}
void CPU::StreamState(bool saving)
{
EmulationSettings* settings = _console->GetSettings();
uint32_t extraScanlinesBeforeNmi = settings->GetPpuExtraScanlinesBeforeNmi();
uint32_t extraScanlinesAfterNmi = settings->GetPpuExtraScanlinesAfterNmi();
uint32_t dipSwitches = _console->GetSettings()->GetDipSwitches();
Stream(_state.PC, _state.SP, _state.PS, _state.A, _state.X, _state.Y, _cycleCount, _state.NMIFlag,
_state.IRQFlag, _dmcDmaRunning, _spriteDmaTransfer,
extraScanlinesBeforeNmi, extraScanlinesAfterNmi, dipSwitches,
_needDummyRead, _needHalt, _startClockCount, _endClockCount, _ppuOffset, _masterClock,
_prevNeedNmi, _prevNmiFlag, _needNmi);
if(!saving) {
settings->SetPpuNmiConfig(extraScanlinesBeforeNmi, extraScanlinesAfterNmi);
settings->SetDipSwitches(dipSwitches);
}
}