Mesen/Core/Disassembler.cpp
2016-12-17 23:14:47 -05:00

439 lines
16 KiB
C++

#include "stdafx.h"
#include <algorithm>
#include "Disassembler.h"
#include "DisassemblyInfo.h"
#include "BaseMapper.h"
#include "MemoryManager.h"
#include "CPU.h"
#include "LabelManager.h"
#include "../Utilities/HexUtilities.h"
#include "Debugger.h"
Disassembler::Disassembler(uint8_t* internalRam, uint8_t* prgRom, uint32_t prgSize, uint8_t* prgRam, uint32_t prgRamSize, Debugger* debugger)
{
_debugger = debugger;
_internalRam = internalRam;
_prgRom = prgRom;
_prgRam = prgRam;
_prgSize = prgSize;
for(uint32_t i = 0; i < prgSize; i++) {
_disassembleCache.push_back(shared_ptr<DisassemblyInfo>(nullptr));
}
for(uint32_t i = 0; i < prgRamSize; i++) {
_disassembleRamCache.push_back(shared_ptr<DisassemblyInfo>(nullptr));
}
for(uint32_t i = 0; i < 0x800; i++) {
_disassembleMemoryCache.push_back(shared_ptr<DisassemblyInfo>(nullptr));
}
BuildOpCodeTables(false);
}
Disassembler::~Disassembler()
{
}
void Disassembler::BuildOpCodeTables(bool useLowerCase)
{
string opName[256] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
"BRK", "ORA", "STP*", "SLO*", "NOP", "ORA", "ASL", "SLO*", "PHP", "ORA", "ASL", "ANC*", "NOP", "ORA", "ASL", "SLO*", //0
"BPL", "ORA", "STP*", "SLO*", "NOP", "ORA", "ASL", "SLO*", "CLC", "ORA", "NOP*", "SLO*", "NOP", "ORA", "ASL", "SLO*", //1
"JSR", "AND", "STP*", "RLA*", "BIT", "AND", "ROL", "RLA*", "PLP", "AND", "ROL", "ANC*", "BIT", "AND", "ROL", "RLA*", //2
"BMI", "AND", "STP*", "RLA*", "NOP", "AND", "ROL", "RLA*", "SEC", "AND", "NOP*", "RLA*", "NOP", "AND", "ROL", "RLA*", //3
"RTI", "EOR", "STP*", "SRE*", "NOP", "EOR", "LSR", "SRE*", "PHA", "EOR", "LSR", "ALR*", "JMP", "EOR", "LSR", "SRE*", //4
"BVC", "EOR", "STP*", "SRE*", "NOP", "EOR", "LSR", "SRE*", "CLI", "EOR", "NOP*", "SRE*", "NOP", "EOR", "LSR", "SRE*", //5
"RTS", "ADC", "STP*", "RRA*", "NOP", "ADC", "ROR", "RRA*", "PLA", "ADC", "ROR", "ARR*", "JMP", "ADC", "ROR", "RRA*", //6
"BVS", "ADC", "STP*", "RRA*", "NOP", "ADC", "ROR", "RRA*", "SEI", "ADC", "NOP*", "RRA*", "NOP", "ADC", "ROR", "RRA*", //7
"NOP", "STA", "NOP", "SAX*", "STY", "STA", "STX", "SAX*", "DEY", "NOP", "TXA", "XAA*", "STY", "STA", "STX", "SAX*", //8
"BCC", "STA", "STP*", "AHX*", "STY", "STA", "STX", "SAX*", "TYA", "STA", "TXS", "TAS*", "SHY*", "STA", "SHX", "AXA*", //9
"LDY", "LDA", "LDX", "LAX*", "LDY", "LDA", "LDX", "LAX*", "TAY", "LDA", "TAX", "LAX*", "LDY", "LDA", "LDX", "LAX*", //A
"BCS", "LDA", "STP*", "LAX*", "LDY", "LDA", "LDX", "LAX*", "CLV", "LDA", "TSX", "LAS*", "LDY", "LDA", "LDX", "LAX*", //B
"CPY", "CMP", "NOP", "DCP*", "CPY", "CMP", "DEC", "DCP*", "INY", "CMP", "DEX", "AXS*", "CPY", "CMP", "DEC", "DCP*", //C
"BNE", "CMP", "STP*", "DCP*", "NOP", "CMP", "DEC", "DCP*", "CLD", "CMP", "NOP*", "DCP*", "NOP", "CMP", "DEC", "DCP*", //D
"CPX", "SBC", "NOP", "ISC*", "CPX", "SBC", "INC", "ISC*", "INX", "SBC", "NOP", "SBC*", "CPX", "SBC", "INC", "ISC*", //E
"BEQ", "SBC", "STP*", "ISC*", "NOP", "SBC", "INC", "ISC*", "SED", "SBC", "NOP*", "ISC*", "NOP", "SBC", "INC", "ISC*" //F
};
AddrMode opMode[256] = {
Imp, IndX, None, IndX, Zero, Zero, Zero, Zero, Imp, Imm, Acc, Imm, Abs, Abs, Abs, Abs,
Rel, IndY, None, IndYW, ZeroX, ZeroX, ZeroX, ZeroX, Imp, AbsY, Imp, AbsYW, AbsX, AbsX, AbsXW, AbsXW,
Abs, IndX, None, IndX, Zero, Zero, Zero, Zero, Imp, Imm, Acc, Imm, Abs, Abs, Abs, Abs,
Rel, IndY, None, IndYW, ZeroX, ZeroX, ZeroX, ZeroX, Imp, AbsY, Imp, AbsYW, AbsX, AbsX, AbsXW, AbsXW,
Imp, IndX, None, IndX, Zero, Zero, Zero, Zero, Imp, Imm, Acc, Imm, Abs, Abs, Abs, Abs,
Rel, IndY, None, IndYW, ZeroX, ZeroX, ZeroX, ZeroX, Imp, AbsY, Imp, AbsYW, AbsX, AbsX, AbsXW, AbsXW,
Imp, IndX, None, IndX, Zero, Zero, Zero, Zero, Imp, Imm, Acc, Imm, Ind, Abs, Abs, Abs,
Rel, IndY, None, IndYW, ZeroX, ZeroX, ZeroX, ZeroX, Imp, AbsY, Imp, AbsYW, AbsX, AbsX, AbsXW, AbsXW,
Imm, IndX, Imm, IndX, Zero, Zero, Zero, Zero, Imp, Imm, Imp, Imm, Abs, Abs, Abs, Abs,
Rel, IndYW, None, IndY, ZeroX, ZeroX, ZeroY, ZeroY, Imp, AbsYW, Imp, AbsY, AbsXW, AbsXW, AbsYW, AbsY,
Imm, IndX, Imm, IndX, Zero, Zero, Zero, Zero, Imp, Imm, Imp, Imm, Abs, Abs, Abs, Abs,
Rel, IndY, None, IndY, ZeroX, ZeroX, ZeroY, ZeroY, Imp, AbsY, Imp, AbsY, AbsX, AbsX, AbsY, AbsY,
Imm, IndX, Imm, IndX, Zero, Zero, Zero, Zero, Imp, Imm, Imp, Imm, Abs, Abs, Abs, Abs,
Rel, IndY, None, IndYW, ZeroX, ZeroX, ZeroX, ZeroX, Imp, AbsY, Imp, AbsYW, AbsX, AbsX, AbsXW, AbsXW,
Imm, IndX, Imm, IndX, Zero, Zero, Zero, Zero, Imp, Imm, Imp, Imm, Abs, Abs, Abs, Abs,
Rel, IndY, None, IndYW, ZeroX, ZeroX, ZeroX, ZeroX, Imp, AbsY, Imp, AbsYW, AbsX, AbsX, AbsXW, AbsXW,
};
for(int i = 0; i < 256; i++) {
if(useLowerCase) {
string name = opName[i];
std::transform(name.begin(), name.end(), name.begin(), ::tolower);
DisassemblyInfo::OPName[i] = name;
} else {
DisassemblyInfo::OPName[i] = opName[i];
}
DisassemblyInfo::OPMode[i] = opMode[i];
switch(DisassemblyInfo::OPMode[i]) {
case AddrMode::Abs:
case AddrMode::AbsX:
case AddrMode::AbsXW:
case AddrMode::AbsY:
case AddrMode::AbsYW:
case AddrMode::Ind:
DisassemblyInfo::OPSize[i] = 3;
break;
case AddrMode::Imm:
case AddrMode::IndX:
case AddrMode::IndY:
case AddrMode::IndYW:
case AddrMode::Rel:
case AddrMode::Zero:
case AddrMode::ZeroX:
case AddrMode::ZeroY:
DisassemblyInfo::OPSize[i] = 2;
break;
default:
DisassemblyInfo::OPSize[i] = 1;
break;
}
}
}
bool Disassembler::IsJump(uint8_t opCode)
{
return opCode == 0x10 || opCode == 0x30|| opCode == 0x50 || opCode == 0x70 || opCode == 0x90 || opCode == 0xB0 || opCode == 0xD0 || opCode == 0xF0 || opCode == 0x4C || opCode == 0x20;
}
bool Disassembler::IsUnconditionalJump(uint8_t opCode)
{
return opCode == 0x40 || opCode == 0x60 || opCode == 0x6C || opCode == 0x4C || opCode == 0x20;
}
uint32_t Disassembler::BuildCache(int32_t absoluteAddr, int32_t absoluteRamAddr, uint16_t memoryAddr, bool isSubEntryPoint)
{
if(memoryAddr < 0x2000) {
memoryAddr = memoryAddr & 0x7FF;
if(!_disassembleMemoryCache[memoryAddr]) {
shared_ptr<DisassemblyInfo> disInfo(new DisassemblyInfo(&_internalRam[memoryAddr], isSubEntryPoint));
_disassembleMemoryCache[memoryAddr] = disInfo;
memoryAddr += disInfo->GetSize();
} else if(isSubEntryPoint) {
_disassembleMemoryCache[memoryAddr]->SetSubEntryPoint();
}
return memoryAddr;
} else {
vector<shared_ptr<DisassemblyInfo>> &cache = absoluteRamAddr >= 0 ? _disassembleRamCache : _disassembleCache;
uint8_t *source = absoluteRamAddr >= 0 ? _prgRam : _prgRom;
if(absoluteRamAddr >= 0) {
absoluteAddr = absoluteRamAddr;
}
if(absoluteAddr >= 0) {
shared_ptr<DisassemblyInfo> disInfo = cache[absoluteAddr];
if(!disInfo) {
while(absoluteAddr < (int32_t)_prgSize && !cache[absoluteAddr]) {
bool isJump = IsUnconditionalJump(source[absoluteAddr]);
disInfo = shared_ptr<DisassemblyInfo>(new DisassemblyInfo(&source[absoluteAddr], isSubEntryPoint));
isSubEntryPoint = false;
cache[absoluteAddr] = disInfo;
absoluteAddr += disInfo->GetSize();
if(isJump) {
//Hit a jump/return instruction, can't assume that what follows is actual code, stop disassembling
break;
}
}
} else {
if(isSubEntryPoint) {
disInfo->SetSubEntryPoint();
}
uint8_t opCode = source[absoluteAddr];
if(IsJump(opCode)) {
uint16_t jumpDest = disInfo->GetOpAddr(memoryAddr);
AddressTypeInfo info;
_debugger->GetAbsoluteAddressAndType(jumpDest, &info);
const uint8_t jsrCode = 0x20;
if(info.Address >= 0) {
if(info.Type == AddressType::PrgRom && !_disassembleCache[info.Address]) {
BuildCache(info.Address, -1, jumpDest, opCode == jsrCode);
} else if(info.Type == AddressType::WorkRam && !_disassembleRamCache[info.Address]) {
BuildCache(-1, info.Address, jumpDest, opCode == jsrCode);
} else if(info.Type == AddressType::InternalRam && !_disassembleMemoryCache[jumpDest]) {
BuildCache(-1, -1, jumpDest, opCode == jsrCode);
}
}
}
absoluteAddr += disInfo->GetSize();
}
}
return absoluteAddr;
}
}
void Disassembler::InvalidateCache(uint16_t memoryAddr, int32_t absoluteRamAddr)
{
int32_t addr;
vector<shared_ptr<DisassemblyInfo>> *cache;
if(memoryAddr < 0x2000) {
addr = memoryAddr & 0x7FF;
cache = &_disassembleMemoryCache;
} else {
addr = absoluteRamAddr;
cache = &_disassembleRamCache;
}
if(addr >= 0) {
for(int i = 1; i <= 2; i++) {
int offsetAddr = (int)addr - i;
if(offsetAddr >= 0) {
if((*cache)[offsetAddr] != nullptr) {
if((*cache)[offsetAddr]->GetSize() >= (uint32_t)i + 1) {
//Invalidate any instruction that overlapped this address
(*cache)[offsetAddr] = nullptr;
}
}
}
}
(*cache)[addr] = nullptr;
}
}
vector<string> Disassembler::SplitComment(string input)
{
vector<string> result;
size_t index;
while((index = input.find('\n')) != string::npos) {
result.push_back(input.substr(0, index));
input = input.substr(index + 1, input.size() - index - 1);
}
result.push_back(input);
return result;
}
string Disassembler::GetLine(string code, string comment, int32_t cpuAddress, int32_t absoluteAddress, string byteCode, string addressing, bool speculativeCode)
{
string out;
out.reserve(40);
if(cpuAddress >= 0) {
if(speculativeCode) {
out += "2\x1";
} else {
out += (_debugger->IsMarkedAsCode(cpuAddress) || absoluteAddress == -1) ? "1\x1" : "0\x1";
}
out += HexUtilities::ToHex((uint16_t)cpuAddress);
} else {
out += "1\x1";
}
out += "\x1";
if(absoluteAddress >= 0) {
out += HexUtilities::ToHex((uint32_t)absoluteAddress);
}
out += "\x1" + byteCode + "\x1" + code + "\x2" + addressing + "\x2";
if(!comment.empty()) {
out += ";" + comment;
}
out += "\n";
return out;
}
string Disassembler::GetSubHeader(DisassemblyInfo *info, string &label, uint16_t relativeAddr, uint16_t resetVector, uint16_t nmiVector, uint16_t irqVector)
{
if(info->IsSubEntryPoint()) {
if(label.empty()) {
return GetLine() + GetLine("__sub start__");
} else {
return GetLine() + GetLine("__" + label + "()__");
}
} else if(relativeAddr == resetVector) {
return GetLine() + GetLine("--reset--");
} else if(relativeAddr == irqVector) {
return GetLine() + GetLine("--irq--");
} else if(relativeAddr == nmiVector) {
return GetLine() + GetLine("--nmi--");
}
return "";
}
string Disassembler::GetCode(uint32_t startAddr, uint32_t endAddr, uint16_t memoryAddr, PrgMemoryType memoryType, bool showEffectiveAddresses, bool showOnlyDiassembledCode, State& cpuState, shared_ptr<MemoryManager> memoryManager, shared_ptr<LabelManager> labelManager)
{
string output;
output.reserve(10000000);
int32_t dbRelativeAddr = 0;
int32_t dbAbsoluteAddr = 0;
string dbBuffer;
uint16_t resetVector = memoryManager->DebugReadWord(CPU::ResetVector);
uint16_t nmiVector = memoryManager->DebugReadWord(CPU::NMIVector);
uint16_t irqVector = memoryManager->DebugReadWord(CPU::IRQVector);
vector<shared_ptr<DisassemblyInfo>> *cache;
uint8_t *source;
uint32_t mask = 0xFFFFFFFF;
if(memoryAddr < 0x2000) {
cache = &_disassembleMemoryCache;
source = _internalRam;
mask = 0x7FF;
} else if(memoryType == PrgMemoryType::WorkRam) {
cache = &_disassembleRamCache;
source = _prgRam;
} else {
cache = &_disassembleCache;
source = _prgRom;
}
string unknownBlockHeader = showOnlyDiassembledCode ? "----" : "__unknown block__";
uint32_t addr = startAddr;
uint32_t byteCount = 0;
bool skippingCode = false;
shared_ptr<CodeDataLogger> cdl = _debugger->GetCodeDataLogger();
while(addr <= endAddr) {
string label = labelManager->GetLabel(memoryAddr, false);
string commentString = labelManager->GetComment(memoryAddr);
string labelLine = label.empty() ? "" : GetLine(label + ":");
string commentLines = "";
bool speculativeCode = false;
if(commentString.find_first_of('\n') != string::npos) {
for(string &str : SplitComment(commentString)) {
commentLines += GetLine("", str);
}
commentString = "";
}
shared_ptr<DisassemblyInfo> info = (*cache)[addr&mask];
if(!info && source == _prgRom) {
if(_debugger->CheckFlag(DebuggerFlags::DisassembleEverything) || _debugger->CheckFlag(DebuggerFlags::DisassembleEverythingButData) && !cdl->IsData(addr)) {
speculativeCode = true;
info = shared_ptr<DisassemblyInfo>(new DisassemblyInfo(source + addr, false));
}
}
if(info && addr + info->GetSize() <= endAddr) {
if(byteCount > 0) {
output += GetLine(dbBuffer, "", dbRelativeAddr, dbAbsoluteAddr);
byteCount = 0;
}
if(skippingCode) {
output += GetLine(unknownBlockHeader, "", (uint16_t)(memoryAddr - 1), addr - 1);
skippingCode = false;
}
output += GetSubHeader(info.get(), label, memoryAddr, resetVector, nmiVector, irqVector);
output += commentLines;
output += labelLine;
string effectiveAddress = showEffectiveAddresses ? info->GetEffectiveAddressString(cpuState, memoryManager, labelManager) : "";
output += GetLine(" " + info->ToString(memoryAddr, memoryManager, labelManager), commentString, memoryAddr, addr, info->GetByteCode(), effectiveAddress, speculativeCode);
if(info->IsSubExitPoint()) {
output += GetLine("__sub end__") + GetLine();
}
if(speculativeCode) {
//For unverified code, check if a verified instruction starts between the start of this instruction and its end.
//If so, we need to realign the disassembler to the start of the next verified instruction
for(uint32_t i = 0; i < info->GetSize(); i++) {
addr++;
memoryAddr++;
if(addr > endAddr || (*cache)[addr&mask]) {
//Verified code found, stop incrementing address counters
break;
}
}
} else {
addr += info->GetSize();
memoryAddr += info->GetSize();
}
} else {
if((!label.empty() || !commentString.empty()) && skippingCode) {
output += GetLine(unknownBlockHeader, "", (uint16_t)(memoryAddr - 1), addr - 1);
skippingCode = false;
}
if(!skippingCode && showOnlyDiassembledCode) {
if(label.empty()) {
output += GetLine("__unknown block__", "", memoryAddr, addr);
if(!commentString.empty()) {
output += GetLine("", commentString);
}
} else {
output += GetLine("__" + label + "__", "", memoryAddr, addr);
if(!commentString.empty()) {
output += GetLine("", commentString);
}
output += commentLines;
}
skippingCode = true;
}
if(!showOnlyDiassembledCode) {
if(byteCount >= 8 || ((!label.empty() || !commentString.empty()) && byteCount > 0)) {
output += GetLine(dbBuffer, "", dbRelativeAddr, dbAbsoluteAddr);
byteCount = 0;
}
if(byteCount == 0) {
dbBuffer = ".db";
output += commentLines;
output += labelLine;
dbRelativeAddr = memoryAddr;
dbAbsoluteAddr = addr;
}
dbBuffer += " $" + HexUtilities::ToHex(source[addr&mask]);
if(!label.empty() || !commentString.empty()) {
output += GetLine(dbBuffer, commentString, dbRelativeAddr, dbAbsoluteAddr);
byteCount = 0;
} else {
byteCount++;
}
}
addr++;
memoryAddr++;
}
}
if(byteCount > 0) {
output += GetLine(dbBuffer, "", dbRelativeAddr, dbAbsoluteAddr);
}
if(skippingCode) {
output += GetLine("----", "", (uint16_t)(memoryAddr - 1), addr - 1);
}
return output;
}
shared_ptr<DisassemblyInfo> Disassembler::GetDisassemblyInfo(int32_t absoluteAddress, int32_t absoluteRamAddress, uint16_t memoryAddress)
{
if(memoryAddress < 0x2000) {
return _disassembleMemoryCache[memoryAddress & 0x7FF];
} else if(absoluteAddress >= 0) {
return _disassembleCache[absoluteAddress];
} else if(absoluteRamAddress >= 0) {
return _disassembleRamCache[absoluteRamAddress];
}
return nullptr;
}