cen64/bus/memorymap.c
Derek "Turtle" Roe 8b89df2fdc See long description
Replaced all references to simulation with emulation
Updated copyright year
Updated .gitignore to reduce chances of random files being uploaded to
the repo
Added .gitattributes to normalize all text files, and to ignore binary
files (which includes the logo and the NEC PDF)
2015-07-01 18:44:21 -05:00

216 lines
5.5 KiB
C

//
// bus/memorymap.c: System memory mapper.
//
// CEN64: Cycle-Accurate Nintendo 64 Emulator.
// Copyright (C) 2015, Tyler J. Stachecki.
//
// This file is subject to the terms and conditions defined in
// 'LICENSE', which is part of this source code package.
//
#include "common.h"
#include "memorymap.h"
static void fixup(struct memory_map *, struct memory_map_node *);
static void rotate_left(struct memory_map *, struct memory_map_node *);
static void rotate_right(struct memory_map *, struct memory_map_node *);
// Creates a new memory map.
void create_memory_map(struct memory_map *map) {
map->next_map_index = 1;
map->nil = map->mappings;
map->root = map->nil;
}
// Rebalances the tree after a node is inserted.
void fixup(struct memory_map *map, struct memory_map_node *node) {
struct memory_map_node *cur;
// Rebalance the whole tree as needed.
while (node->parent->color == MEMORY_MAP_RED) {
if (node->parent == node->parent->parent->left) {
cur = node->parent->parent->right;
// Case 1: We only need to update colors.
if (cur->color == MEMORY_MAP_RED) {
node->parent->color = MEMORY_MAP_BLACK;
cur->color = MEMORY_MAP_BLACK;
node->parent->parent->color = MEMORY_MAP_RED;
node = node->parent->parent;
}
else {
// Case 2: We need to perform a left rotation.
if (node == node->parent->right) {
node = node->parent;
rotate_left(map, node);
}
// Case 3: We need to perform a right rotation.
node->parent->color = MEMORY_MAP_BLACK;
node->parent->parent->color = MEMORY_MAP_RED;
rotate_right(map, node->parent->parent);
}
}
else {
cur = node->parent->parent->left;
// Case 1: We only need to update colors.
if (cur->color == MEMORY_MAP_RED) {
node->parent->color = MEMORY_MAP_BLACK;
cur->color = MEMORY_MAP_BLACK;
node->parent->parent->color = MEMORY_MAP_RED;
node = node->parent->parent;
}
else {
// Case 2: We need to perform a right rotation.
if (node == node->parent->left) {
node = node->parent;
rotate_right(map, node);
}
// Case 3: We need to perform a left rotation.
node->parent->color = MEMORY_MAP_BLACK;
node->parent->parent->color = MEMORY_MAP_RED;
rotate_left(map, node->parent->parent);
}
}
}
// When we rebalanced the tree, we might have accidentally colored
// the root red, so unconditionally color if back after rebalancing.
map->root->color = MEMORY_MAP_BLACK;
}
// Inserts a mapping into the tree.
int map_address_range(struct memory_map *map, uint32_t start, uint32_t length,
void *instance, memory_rd_function on_read, memory_wr_function on_write) {
struct memory_map_node *check = map->root;
struct memory_map_node *cur = map->nil;
uint32_t end = start + length - 1;
struct memory_map_node *new_node;
struct memory_mapping mapping;
// Make sure we have enough space in the map.
const unsigned num_mappings = sizeof(map->mappings) /
sizeof(map->mappings[0]) - 1;
if (unlikely(map->next_map_index >= num_mappings)) {
debug("map_address_range: Out of free mappings.");
return 1;
}
new_node = &map->mappings[map->next_map_index++];
// Walk down the tree.
while (check != map->nil) {
cur = check;
check = (start < cur->mapping.start)
? check->left : check->right;
}
// Insert the entry.
if (cur == map->nil)
map->root = new_node;
else if (start < cur->mapping.start)
cur->left = new_node;
else
cur->right = new_node;
new_node->left = map->nil;
new_node->right = map->nil;
new_node->parent = cur;
// Initialize the entry.
mapping.instance = instance;
mapping.on_read = on_read;
mapping.on_write = on_write;
mapping.end = end;
mapping.length = length;
mapping.start = start;
new_node->mapping = mapping;
// Rebalance the tree.
new_node->color = MEMORY_MAP_RED;
fixup(map, new_node);
return 0;
}
// Returns a pointer to a region given an address.
const struct memory_mapping *resolve_mapped_address(
const struct memory_map *map, uint32_t address) {
const struct memory_map_node *cur = map->root;
do {
if (address < cur->mapping.start)
cur = cur->left;
else if (address > cur->mapping.end)
cur = cur->right;
else
return &cur->mapping;
} while (cur != map->nil);
return NULL;
}
// Performs a left rotation centered at n.
static void rotate_left(struct memory_map *map, struct memory_map_node *n) {
struct memory_map_node *y = n->right;
// Turn y's left subtree into n's right subtree.
n->right = y->left;
if (y->left != map->nil)
y->left->parent = n;
// Link n's parent to y.
y->parent = n->parent;
if (n->parent == map->nil)
map->root = y;
else if (n == n->parent->left)
n->parent->left = y;
else
n->parent->right = y;
// Put n on y's left.
y->left = n;
n->parent = y;
}
// Performs a right rotation centered at n.
static void rotate_right(struct memory_map *map, struct memory_map_node *n) {
struct memory_map_node *y = n->left;
// Turn y's right subtree into n's left subtree.
n->left = y->right;
if (y->right != map->nil)
y->right->parent = n;
// Link n's parent to y.
y->parent = n->parent;
if (n->parent == map->nil)
map->root = y;
else if (n == n->parent->left)
n->parent->left = y;
else
n->parent->right = y;
// Put n on y's right.
y->right = n;
n->parent = y;
}