dolphin/Source/Core/Core/PowerPC/Expression.cpp
Guilherme Janczak 0859d2c472
improve NetBSD-specific code
NetBSD doesn't put packages in /usr/local like /CMakeLists.txt thought.
The `#ifdef __NetBSD__` around iconv was actually breaking compilation
on NetBSD when using the system libiconv (there's also a GNU iconv
package)
A C program included from C++ source broke on NetBSD specifically, work
around it.

This doesn't fix compilation on NetBSD, which is currently broken, but
is closer to correct.
2024-05-03 15:12:29 +00:00

358 lines
9.7 KiB
C++

// Copyright 2020 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Core/PowerPC/Expression.h"
#include <algorithm>
#include <cstdlib>
#include <fmt/format.h>
#include <optional>
#include <string>
#include <string_view>
#include <utility>
// https://github.com/zserge/expr/ is a C program and sorta valid C++.
// When included in a C++ program, it's treated as a C++ code, and it may cause
// issues: <cmath> may already be included, if so, including <math.h> may
// not do anything. <math.h> is obligated to put its functions in the global
// namespace, while <cmath> may or may not. The C code we're interpreting as
// C++ won't call functions by their qualified names. The code may work anyway
// if <cmath> puts its functions in the global namespace, or if the functions
// are actually macros that expand inline, both of which are common.
// NetBSD 10.0 i386 is an exception, and we need `using` there.
using std::isinf;
using std::isnan;
#include <expr.h>
#include "Common/BitUtils.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Core/Core.h"
#include "Core/Debugger/Debugger_SymbolMap.h"
#include "Core/PowerPC/MMU.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
template <typename T>
static T HostRead(const Core::CPUThreadGuard& guard, u32 address);
template <typename T>
static void HostWrite(const Core::CPUThreadGuard& guard, T var, u32 address);
template <>
u8 HostRead(const Core::CPUThreadGuard& guard, u32 address)
{
return PowerPC::MMU::HostRead_U8(guard, address);
}
template <>
u16 HostRead(const Core::CPUThreadGuard& guard, u32 address)
{
return PowerPC::MMU::HostRead_U16(guard, address);
}
template <>
u32 HostRead(const Core::CPUThreadGuard& guard, u32 address)
{
return PowerPC::MMU::HostRead_U32(guard, address);
}
template <>
u64 HostRead(const Core::CPUThreadGuard& guard, u32 address)
{
return PowerPC::MMU::HostRead_U64(guard, address);
}
template <>
void HostWrite(const Core::CPUThreadGuard& guard, u8 var, u32 address)
{
PowerPC::MMU::HostWrite_U8(guard, var, address);
}
template <>
void HostWrite(const Core::CPUThreadGuard& guard, u16 var, u32 address)
{
PowerPC::MMU::HostWrite_U16(guard, var, address);
}
template <>
void HostWrite(const Core::CPUThreadGuard& guard, u32 var, u32 address)
{
PowerPC::MMU::HostWrite_U32(guard, var, address);
}
template <>
void HostWrite(const Core::CPUThreadGuard& guard, u64 var, u32 address)
{
PowerPC::MMU::HostWrite_U64(guard, var, address);
}
template <typename T, typename U = T>
static double HostReadFunc(expr_func* f, vec_expr_t* args, void* c)
{
if (vec_len(args) != 1)
return 0;
const u32 address = static_cast<u32>(expr_eval(&vec_nth(args, 0)));
Core::CPUThreadGuard guard(Core::System::GetInstance());
return Common::BitCast<T>(HostRead<U>(guard, address));
}
template <typename T, typename U = T>
static double HostWriteFunc(expr_func* f, vec_expr_t* args, void* c)
{
if (vec_len(args) != 2)
return 0;
const T var = static_cast<T>(expr_eval(&vec_nth(args, 0)));
const u32 address = static_cast<u32>(expr_eval(&vec_nth(args, 1)));
Core::CPUThreadGuard guard(Core::System::GetInstance());
HostWrite<U>(guard, Common::BitCast<U>(var), address);
return var;
}
template <typename T, typename U = T>
static double CastFunc(expr_func* f, vec_expr_t* args, void* c)
{
if (vec_len(args) != 1)
return 0;
return Common::BitCast<T>(static_cast<U>(expr_eval(&vec_nth(args, 0))));
}
static double CallstackFunc(expr_func* f, vec_expr_t* args, void* c)
{
if (vec_len(args) != 1)
return 0;
std::vector<Dolphin_Debugger::CallstackEntry> stack;
{
Core::CPUThreadGuard guard(Core::System::GetInstance());
const bool success = Dolphin_Debugger::GetCallstack(guard, stack);
if (!success)
return 0;
}
double num = expr_eval(&vec_nth(args, 0));
if (!std::isnan(num))
{
u32 address = static_cast<u32>(num);
return std::any_of(stack.begin(), stack.end(),
[address](const auto& s) { return s.vAddress == address; });
}
const char* cstr = expr_get_str(&vec_nth(args, 0));
if (cstr != nullptr)
{
return std::any_of(stack.begin(), stack.end(),
[cstr](const auto& s) { return s.Name.find(cstr) != std::string::npos; });
}
return 0;
}
static std::optional<std::string> ReadStringArg(const Core::CPUThreadGuard& guard, expr* e)
{
double num = expr_eval(e);
if (!std::isnan(num))
{
u32 address = static_cast<u32>(num);
return PowerPC::MMU::HostGetString(guard, address);
}
const char* cstr = expr_get_str(e);
if (cstr != nullptr)
{
return std::string(cstr);
}
return std::nullopt;
}
static double StreqFunc(expr_func* f, vec_expr_t* args, void* c)
{
if (vec_len(args) != 2)
return 0;
std::array<std::string, 2> strs;
Core::CPUThreadGuard guard(Core::System::GetInstance());
for (int i = 0; i < 2; i++)
{
std::optional<std::string> arg = ReadStringArg(guard, &vec_nth(args, i));
if (arg == std::nullopt)
return 0;
strs[i] = std::move(*arg);
}
return strs[0] == strs[1];
}
static std::array<expr_func, 23> g_expr_funcs{{
// For internal storage and comparisons, everything is auto-converted to Double.
// If u64 ints are added, this could produce incorrect results.
{"read_u8", HostReadFunc<u8>},
{"read_s8", HostReadFunc<s8, u8>},
{"read_u16", HostReadFunc<u16>},
{"read_s16", HostReadFunc<s16, u16>},
{"read_u32", HostReadFunc<u32>},
{"read_s32", HostReadFunc<s32, u32>},
{"read_f32", HostReadFunc<float, u32>},
{"read_f64", HostReadFunc<double, u64>},
{"write_u8", HostWriteFunc<u8>},
{"write_u16", HostWriteFunc<u16>},
{"write_u32", HostWriteFunc<u32>},
{"write_f32", HostWriteFunc<float, u32>},
{"write_f64", HostWriteFunc<double, u64>},
{"u8", CastFunc<u8>},
{"s8", CastFunc<s8, u8>},
{"u16", CastFunc<u16>},
{"s16", CastFunc<s16, u16>},
{"u32", CastFunc<u32>},
{"s32", CastFunc<s32, u32>},
{"callstack", CallstackFunc},
{"streq", StreqFunc},
{},
}};
void ExprDeleter::operator()(expr* expression) const
{
expr_destroy(expression, nullptr);
}
void ExprVarListDeleter::operator()(expr_var_list* vars) const
{
// Free list elements
expr_destroy(nullptr, vars);
// Free list object
delete vars;
}
Expression::Expression(std::string_view text, ExprPointer ex, ExprVarListPointer vars)
: m_text(text), m_expr(std::move(ex)), m_vars(std::move(vars))
{
for (auto* v = m_vars->head; v != nullptr; v = v->next)
{
const std::string_view name = v->name;
VarBinding bind;
if (name.length() >= 2 && name.length() <= 3)
{
if (name[0] == 'r' || name[0] == 'f')
{
char* end = nullptr;
const int index = std::strtol(name.data() + 1, &end, 10);
if (index >= 0 && index <= 31 && end == name.data() + name.length())
{
bind.type = name[0] == 'r' ? VarBindingType::GPR : VarBindingType::FPR;
bind.index = index;
}
}
else if (name == "lr")
{
bind.type = VarBindingType::SPR;
bind.index = SPR_LR;
}
else if (name == "ctr")
{
bind.type = VarBindingType::SPR;
bind.index = SPR_CTR;
}
else if (name == "pc")
{
bind.type = VarBindingType::PCtr;
}
}
m_binds.emplace_back(bind);
}
}
std::optional<Expression> Expression::TryParse(std::string_view text)
{
ExprVarListPointer vars{new expr_var_list{}};
ExprPointer ex{expr_create(text.data(), text.length(), vars.get(), g_expr_funcs.data())};
if (!ex)
return std::nullopt;
return Expression{text, std::move(ex), std::move(vars)};
}
double Expression::Evaluate(Core::System& system) const
{
SynchronizeBindings(system, SynchronizeDirection::From);
double result = expr_eval(m_expr.get());
SynchronizeBindings(system, SynchronizeDirection::To);
Reporting(result);
return result;
}
void Expression::SynchronizeBindings(Core::System& system, SynchronizeDirection dir) const
{
auto& ppc_state = system.GetPPCState();
auto bind = m_binds.begin();
for (auto* v = m_vars->head; v != nullptr; v = v->next, ++bind)
{
switch (bind->type)
{
case VarBindingType::Zero:
if (dir == SynchronizeDirection::From)
v->value = 0;
break;
case VarBindingType::GPR:
if (dir == SynchronizeDirection::From)
v->value = static_cast<double>(ppc_state.gpr[bind->index]);
else
ppc_state.gpr[bind->index] = static_cast<u32>(static_cast<s64>(v->value));
break;
case VarBindingType::FPR:
if (dir == SynchronizeDirection::From)
v->value = ppc_state.ps[bind->index].PS0AsDouble();
else
ppc_state.ps[bind->index].SetPS0(v->value);
break;
case VarBindingType::SPR:
if (dir == SynchronizeDirection::From)
v->value = static_cast<double>(ppc_state.spr[bind->index]);
else
ppc_state.spr[bind->index] = static_cast<u32>(static_cast<s64>(v->value));
break;
case VarBindingType::PCtr:
if (dir == SynchronizeDirection::From)
v->value = static_cast<double>(ppc_state.pc);
break;
}
}
}
void Expression::Reporting(const double result) const
{
bool is_nan = std::isnan(result);
std::string message;
for (auto* v = m_vars->head; v != nullptr; v = v->next)
{
if (std::isnan(v->value))
is_nan = true;
fmt::format_to(std::back_inserter(message), " {}={}", v->name, v->value);
}
if (is_nan)
{
message.append("\nBreakpoint condition encountered a NaN");
Core::DisplayMessage("Breakpoint condition has encountered a NaN.", 2000);
}
if (result != 0.0 || is_nan)
NOTICE_LOG_FMT(MEMMAP, "Breakpoint condition returned: {}. Vars:{}", result, message);
}
std::string Expression::GetText() const
{
return m_text;
}