dynarmic/src/dynarmic/backend/exception_handler_posix.cpp
Yang Liu a4b9b431b0 backend/rv64: Add initial RISC-V framework
RISC-V target is now compilable.
2024-03-02 19:38:46 +00:00

334 lines
9.5 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2019 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include "dynarmic/backend/exception_handler.h"
#ifdef __APPLE__
# include <signal.h>
# include <sys/ucontext.h>
#else
# include <signal.h>
# ifndef __OpenBSD__
# include <ucontext.h>
# endif
#endif
#include <cstring>
#include <functional>
#include <memory>
#include <mutex>
#include <optional>
#include <vector>
#include <mcl/assert.hpp>
#include <mcl/bit_cast.hpp>
#include <mcl/stdint.hpp>
#if defined(MCL_ARCHITECTURE_X86_64)
# include "dynarmic/backend/x64/block_of_code.h"
#elif defined(MCL_ARCHITECTURE_ARM64)
# include <oaknut/code_block.hpp>
# include "dynarmic/backend/arm64/abi.h"
#elif defined(MCL_ARCHITECTURE_RISCV)
# include "dynarmic/backend/riscv64/dummy_code_block.h"
#else
# error "Invalid architecture"
#endif
namespace Dynarmic::Backend {
namespace {
struct CodeBlockInfo {
u64 code_begin, code_end;
std::function<FakeCall(u64)> cb;
};
class SigHandler {
public:
SigHandler();
~SigHandler();
void AddCodeBlock(CodeBlockInfo info);
void RemoveCodeBlock(u64 host_pc);
bool SupportsFastmem() const { return supports_fast_mem; }
private:
auto FindCodeBlockInfo(u64 host_pc) {
return std::find_if(code_block_infos.begin(), code_block_infos.end(), [&](const auto& x) { return x.code_begin <= host_pc && x.code_end > host_pc; });
}
bool supports_fast_mem = true;
void* signal_stack_memory = nullptr;
std::vector<CodeBlockInfo> code_block_infos;
std::mutex code_block_infos_mutex;
struct sigaction old_sa_segv;
struct sigaction old_sa_bus;
static void SigAction(int sig, siginfo_t* info, void* raw_context);
};
std::mutex handler_lock;
std::optional<SigHandler> sig_handler;
void RegisterHandler() {
std::lock_guard<std::mutex> guard(handler_lock);
if (!sig_handler) {
sig_handler.emplace();
}
}
SigHandler::SigHandler() {
const size_t signal_stack_size = std::max<size_t>(SIGSTKSZ, 2 * 1024 * 1024);
signal_stack_memory = std::malloc(signal_stack_size);
stack_t signal_stack;
signal_stack.ss_sp = signal_stack_memory;
signal_stack.ss_size = signal_stack_size;
signal_stack.ss_flags = 0;
if (sigaltstack(&signal_stack, nullptr) != 0) {
fmt::print(stderr, "dynarmic: POSIX SigHandler: init failure at sigaltstack\n");
supports_fast_mem = false;
return;
}
struct sigaction sa;
sa.sa_handler = nullptr;
sa.sa_sigaction = &SigHandler::SigAction;
sa.sa_flags = SA_SIGINFO | SA_ONSTACK | SA_RESTART;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGSEGV, &sa, &old_sa_segv) != 0) {
fmt::print(stderr, "dynarmic: POSIX SigHandler: could not set SIGSEGV handler\n");
supports_fast_mem = false;
return;
}
#ifdef __APPLE__
if (sigaction(SIGBUS, &sa, &old_sa_bus) != 0) {
fmt::print(stderr, "dynarmic: POSIX SigHandler: could not set SIGBUS handler\n");
supports_fast_mem = false;
return;
}
#endif
}
SigHandler::~SigHandler() {
std::free(signal_stack_memory);
}
void SigHandler::AddCodeBlock(CodeBlockInfo cbi) {
std::lock_guard<std::mutex> guard(code_block_infos_mutex);
if (auto iter = FindCodeBlockInfo(cbi.code_begin); iter != code_block_infos.end()) {
code_block_infos.erase(iter);
}
code_block_infos.push_back(cbi);
}
void SigHandler::RemoveCodeBlock(u64 host_pc) {
std::lock_guard<std::mutex> guard(code_block_infos_mutex);
const auto iter = FindCodeBlockInfo(host_pc);
if (iter == code_block_infos.end()) {
return;
}
code_block_infos.erase(iter);
}
void SigHandler::SigAction(int sig, siginfo_t* info, void* raw_context) {
ASSERT(sig == SIGSEGV || sig == SIGBUS);
#ifndef MCL_ARCHITECTURE_RISCV
ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(raw_context);
# ifndef __OpenBSD__
auto& mctx = ucontext->uc_mcontext;
# endif
#endif
#if defined(MCL_ARCHITECTURE_X86_64)
# if defined(__APPLE__)
# define CTX_RIP (mctx->__ss.__rip)
# define CTX_RSP (mctx->__ss.__rsp)
# elif defined(__linux__)
# define CTX_RIP (mctx.gregs[REG_RIP])
# define CTX_RSP (mctx.gregs[REG_RSP])
# elif defined(__FreeBSD__)
# define CTX_RIP (mctx.mc_rip)
# define CTX_RSP (mctx.mc_rsp)
# elif defined(__NetBSD__)
# define CTX_RIP (mctx.__gregs[_REG_RIP])
# define CTX_RSP (mctx.__gregs[_REG_RSP])
# elif defined(__OpenBSD__)
# define CTX_RIP (ucontext->sc_rip)
# define CTX_RSP (ucontext->sc_rsp)
# else
# error "Unknown platform"
# endif
{
std::lock_guard<std::mutex> guard(sig_handler->code_block_infos_mutex);
const auto iter = sig_handler->FindCodeBlockInfo(CTX_RIP);
if (iter != sig_handler->code_block_infos.end()) {
FakeCall fc = iter->cb(CTX_RIP);
CTX_RSP -= sizeof(u64);
*mcl::bit_cast<u64*>(CTX_RSP) = fc.ret_rip;
CTX_RIP = fc.call_rip;
return;
}
}
fmt::print(stderr, "Unhandled {} at rip {:#018x}\n", sig == SIGSEGV ? "SIGSEGV" : "SIGBUS", CTX_RIP);
#elif defined(MCL_ARCHITECTURE_ARM64)
# if defined(__APPLE__)
# define CTX_PC (mctx->__ss.__pc)
# define CTX_SP (mctx->__ss.__sp)
# define CTX_LR (mctx->__ss.__lr)
# define CTX_X(i) (mctx->__ss.__x[i])
# define CTX_Q(i) (mctx->__ns.__v[i])
# elif defined(__linux__)
# define CTX_PC (mctx.pc)
# define CTX_SP (mctx.sp)
# define CTX_LR (mctx.regs[30])
# define CTX_X(i) (mctx.regs[i])
# define CTX_Q(i) (fpctx->vregs[i])
[[maybe_unused]] const auto fpctx = [&mctx] {
_aarch64_ctx* header = (_aarch64_ctx*)&mctx.__reserved;
while (header->magic != FPSIMD_MAGIC) {
ASSERT(header->magic && header->size);
header = (_aarch64_ctx*)((char*)header + header->size);
}
return (fpsimd_context*)header;
}();
# elif defined(__FreeBSD__)
# define CTX_PC (mctx.mc_gpregs.gp_elr)
# define CTX_SP (mctx.mc_gpregs.gp_sp)
# define CTX_LR (mctx.mc_gpregs.gp_lr)
# define CTX_X(i) (mctx.mc_gpregs.gp_x[i])
# define CTX_Q(i) (mctx.mc_fpregs.fp_q[i])
# elif defined(__NetBSD__)
# define CTX_PC (mctx.mc_gpregs.gp_elr)
# define CTX_SP (mctx.mc_gpregs.gp_sp)
# define CTX_LR (mctx.mc_gpregs.gp_lr)
# define CTX_X(i) (mctx.mc_gpregs.gp_x[i])
# define CTX_Q(i) (mctx.mc_fpregs.fp_q[i])
# elif defined(__OpenBSD__)
# define CTX_PC (ucontext->sc_elr)
# define CTX_SP (ucontext->sc_sp)
# define CTX_LR (ucontext->sc_lr)
# define CTX_X(i) (ucontext->sc_x[i])
# define CTX_Q(i) (ucontext->sc_q[i])
# else
# error "Unknown platform"
# endif
{
std::lock_guard<std::mutex> guard(sig_handler->code_block_infos_mutex);
const auto iter = sig_handler->FindCodeBlockInfo(CTX_PC);
if (iter != sig_handler->code_block_infos.end()) {
FakeCall fc = iter->cb(CTX_PC);
CTX_PC = fc.call_pc;
return;
}
}
fmt::print(stderr, "Unhandled {} at pc {:#018x}\n", sig == SIGSEGV ? "SIGSEGV" : "SIGBUS", CTX_PC);
#elif defined(MCL_ARCHITECTURE_RISCV)
ASSERT_FALSE("Unimplemented");
#else
# error "Invalid architecture"
#endif
struct sigaction* retry_sa = sig == SIGSEGV ? &sig_handler->old_sa_segv : &sig_handler->old_sa_bus;
if (retry_sa->sa_flags & SA_SIGINFO) {
retry_sa->sa_sigaction(sig, info, raw_context);
return;
}
if (retry_sa->sa_handler == SIG_DFL) {
signal(sig, SIG_DFL);
return;
}
if (retry_sa->sa_handler == SIG_IGN) {
return;
}
retry_sa->sa_handler(sig);
}
} // anonymous namespace
struct ExceptionHandler::Impl final {
Impl(u64 code_begin_, u64 code_end_)
: code_begin(code_begin_)
, code_end(code_end_) {
RegisterHandler();
}
void SetCallback(std::function<FakeCall(u64)> cb) {
CodeBlockInfo cbi;
cbi.code_begin = code_begin;
cbi.code_end = code_end;
cbi.cb = cb;
sig_handler->AddCodeBlock(cbi);
}
~Impl() {
sig_handler->RemoveCodeBlock(code_begin);
}
private:
u64 code_begin, code_end;
};
ExceptionHandler::ExceptionHandler() = default;
ExceptionHandler::~ExceptionHandler() = default;
#if defined(MCL_ARCHITECTURE_X86_64)
void ExceptionHandler::Register(X64::BlockOfCode& code) {
const u64 code_begin = mcl::bit_cast<u64>(code.getCode());
const u64 code_end = code_begin + code.GetTotalCodeSize();
impl = std::make_unique<Impl>(code_begin, code_end);
}
#elif defined(MCL_ARCHITECTURE_ARM64)
void ExceptionHandler::Register(oaknut::CodeBlock& mem, std::size_t size) {
const u64 code_begin = mcl::bit_cast<u64>(mem.ptr());
const u64 code_end = code_begin + size;
impl = std::make_unique<Impl>(code_begin, code_end);
}
#elif defined(MCL_ARCHITECTURE_RISCV)
void ExceptionHandler::Register(RV64::DummyCodeBlock& mem, std::size_t size) {
const u64 code_begin = mcl::bit_cast<u64>(mem.ptr());
const u64 code_end = code_begin + size;
impl = std::make_unique<Impl>(code_begin, code_end);
}
#else
# error "Invalid architecture"
#endif
bool ExceptionHandler::SupportsFastmem() const noexcept {
return static_cast<bool>(impl) && sig_handler->SupportsFastmem();
}
void ExceptionHandler::SetFastmemCallback(std::function<FakeCall(u64)> cb) {
impl->SetCallback(cb);
}
} // namespace Dynarmic::Backend