early-access version 4050

This commit is contained in:
pineappleEA 2024-01-07 10:47:31 +01:00
parent ce80dbf586
commit 64c33f5ba4
120 changed files with 2736 additions and 1258 deletions

View file

@ -1,7 +1,7 @@
yuzu emulator early access
=============
This is the source code for early-access 4048.
This is the source code for early-access 4050.
## Legal Notice

View file

@ -8,6 +8,7 @@
#include "audio_core/sink/sink_stream.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/guest_memory.h"
#include "core/memory.h"
namespace AudioCore {

View file

@ -9,6 +9,7 @@
#include "common/fixed_point.h"
#include "common/logging/log.h"
#include "common/scratch_buffer.h"
#include "core/guest_memory.h"
#include "core/memory.h"
namespace AudioCore::Renderer {

View file

@ -45,6 +45,7 @@ using f32 = float; ///< 32-bit floating point
using f64 = double; ///< 64-bit floating point
using VAddr = u64; ///< Represents a pointer in the userspace virtual address space.
using DAddr = u64; ///< Represents a pointer in the device specific virtual address space.
using PAddr = u64; ///< Represents a pointer in the ARM11 physical address space.
using GPUVAddr = u64; ///< Represents a pointer in the GPU virtual address space.

View file

@ -37,6 +37,8 @@ add_library(core STATIC
debugger/gdbstub_arch.h
debugger/gdbstub.cpp
debugger/gdbstub.h
device_memory_manager.h
device_memory_manager.inc
device_memory.cpp
device_memory.h
file_sys/fssystem/fs_i_storage.h
@ -605,6 +607,8 @@ add_library(core STATIC
hle/service/ns/pdm_qry.h
hle/service/nvdrv/core/container.cpp
hle/service/nvdrv/core/container.h
hle/service/nvdrv/core/heap_mapper.cpp
hle/service/nvdrv/core/heap_mapper.h
hle/service/nvdrv/core/nvmap.cpp
hle/service/nvdrv/core/nvmap.h
hle/service/nvdrv/core/syncpoint_manager.cpp

View file

@ -28,6 +28,7 @@
#include "core/file_sys/savedata_factory.h"
#include "core/file_sys/vfs_concat.h"
#include "core/file_sys/vfs_real.h"
#include "core/gpu_dirty_memory_manager.h"
#include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_resource_limit.h"
@ -564,6 +565,9 @@ struct System::Impl {
std::array<u64, Core::Hardware::NUM_CPU_CORES> dynarmic_ticks{};
std::array<MicroProfileToken, Core::Hardware::NUM_CPU_CORES> microprofile_cpu{};
std::array<Core::GPUDirtyMemoryManager, Core::Hardware::NUM_CPU_CORES>
gpu_dirty_memory_managers;
std::deque<std::vector<u8>> user_channel;
};
@ -650,8 +654,14 @@ size_t System::GetCurrentHostThreadID() const {
return impl->kernel.GetCurrentHostThreadID();
}
void System::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) {
return this->ApplicationProcess()->GatherGPUDirtyMemory(callback);
std::span<GPUDirtyMemoryManager> System::GetGPUDirtyMemoryManager() {
return impl->gpu_dirty_memory_managers;
}
void System::GatherGPUDirtyMemory(std::function<void(PAddr, size_t)>& callback) {
for (auto& manager : impl->gpu_dirty_memory_managers) {
manager.Gather(callback);
}
}
PerfStatsResults System::GetAndResetPerfStats() {

View file

@ -8,6 +8,7 @@
#include <functional>
#include <memory>
#include <mutex>
#include <span>
#include <string>
#include <vector>
@ -116,6 +117,7 @@ class CpuManager;
class Debugger;
class DeviceMemory;
class ExclusiveMonitor;
class GPUDirtyMemoryManager;
class PerfStats;
class Reporter;
class SpeedLimiter;
@ -224,7 +226,9 @@ public:
/// Prepare the core emulation for a reschedule
void PrepareReschedule(u32 core_index);
void GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback);
std::span<GPUDirtyMemoryManager> GetGPUDirtyMemoryManager();
void GatherGPUDirtyMemory(std::function<void(PAddr, size_t)>& callback);
[[nodiscard]] size_t GetCurrentHostThreadID() const;

View file

@ -31,6 +31,12 @@ public:
DramMemoryMap::Base;
}
template <typename T>
PAddr GetRawPhysicalAddr(const T* ptr) const {
return static_cast<PAddr>(reinterpret_cast<uintptr_t>(ptr) -
reinterpret_cast<uintptr_t>(buffer.BackingBasePointer()));
}
template <typename T>
T* GetPointer(Common::PhysicalAddress addr) {
return reinterpret_cast<T*>(buffer.BackingBasePointer() +
@ -43,6 +49,16 @@ public:
(GetInteger(addr) - DramMemoryMap::Base));
}
template <typename T>
T* GetPointerFromRaw(PAddr addr) {
return reinterpret_cast<T*>(buffer.BackingBasePointer() + addr);
}
template <typename T>
const T* GetPointerFromRaw(PAddr addr) const {
return reinterpret_cast<T*>(buffer.BackingBasePointer() + addr);
}
Common::HostMemory buffer;
};

208
src/core/device_memory_manager.h Executable file
View file

@ -0,0 +1,208 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <atomic>
#include <deque>
#include <memory>
#include <mutex>
#include "common/common_types.h"
#include "common/scratch_buffer.h"
#include "common/virtual_buffer.h"
namespace Core {
constexpr size_t DEVICE_PAGEBITS = 12ULL;
constexpr size_t DEVICE_PAGESIZE = 1ULL << DEVICE_PAGEBITS;
constexpr size_t DEVICE_PAGEMASK = DEVICE_PAGESIZE - 1ULL;
class DeviceMemory;
namespace Memory {
class Memory;
}
template <typename DTraits>
struct DeviceMemoryManagerAllocator;
template <typename Traits>
class DeviceMemoryManager {
using DeviceInterface = typename Traits::DeviceInterface;
using DeviceMethods = typename Traits::DeviceMethods;
public:
DeviceMemoryManager(const DeviceMemory& device_memory);
~DeviceMemoryManager();
void BindInterface(DeviceInterface* device_inter);
DAddr Allocate(size_t size);
void AllocateFixed(DAddr start, size_t size);
void Free(DAddr start, size_t size);
void Map(DAddr address, VAddr virtual_address, size_t size, size_t process_id,
bool track = false);
void Unmap(DAddr address, size_t size);
void TrackContinuityImpl(DAddr address, VAddr virtual_address, size_t size, size_t process_id);
void TrackContinuity(DAddr address, VAddr virtual_address, size_t size, size_t process_id) {
std::scoped_lock lk(mapping_guard);
TrackContinuityImpl(address, virtual_address, size, process_id);
}
// Write / Read
template <typename T>
T* GetPointer(DAddr address);
template <typename T>
const T* GetPointer(DAddr address) const;
template <typename Func>
void ApplyOpOnPAddr(PAddr address, Common::ScratchBuffer<u32>& buffer, Func&& operation) {
DAddr subbits = static_cast<DAddr>(address & page_mask);
const u32 base = compressed_device_addr[(address >> page_bits)];
if ((base >> MULTI_FLAG_BITS) == 0) [[likely]] {
const DAddr d_address = (static_cast<DAddr>(base) << page_bits) + subbits;
operation(d_address);
return;
}
InnerGatherDeviceAddresses(buffer, address);
for (u32 value : buffer) {
operation((static_cast<DAddr>(value) << page_bits) + subbits);
}
}
template <typename Func>
void ApplyOpOnPointer(const u8* p, Common::ScratchBuffer<u32>& buffer, Func&& operation) {
PAddr address = GetRawPhysicalAddr<u8>(p);
ApplyOpOnPAddr(address, buffer, operation);
}
PAddr GetPhysicalRawAddressFromDAddr(DAddr address) const {
PAddr subbits = static_cast<PAddr>(address & page_mask);
auto paddr = compressed_physical_ptr[(address >> page_bits)];
if (paddr == 0) {
return 0;
}
return (static_cast<PAddr>(paddr - 1) << page_bits) + subbits;
}
template <typename T>
void Write(DAddr address, T value);
template <typename T>
T Read(DAddr address) const;
u8* GetSpan(const DAddr src_addr, const std::size_t size);
const u8* GetSpan(const DAddr src_addr, const std::size_t size) const;
void ReadBlock(DAddr address, void* dest_pointer, size_t size);
void ReadBlockUnsafe(DAddr address, void* dest_pointer, size_t size);
void WriteBlock(DAddr address, const void* src_pointer, size_t size);
void WriteBlockUnsafe(DAddr address, const void* src_pointer, size_t size);
size_t RegisterProcess(Memory::Memory* memory);
void UnregisterProcess(size_t id);
void UpdatePagesCachedCount(DAddr addr, size_t size, s32 delta);
static constexpr size_t AS_BITS = Traits::device_virtual_bits;
private:
static constexpr size_t device_virtual_bits = Traits::device_virtual_bits;
static constexpr size_t device_as_size = 1ULL << device_virtual_bits;
static constexpr size_t physical_min_bits = 32;
static constexpr size_t physical_max_bits = 33;
static constexpr size_t page_bits = 12;
static constexpr size_t page_size = 1ULL << page_bits;
static constexpr size_t page_mask = page_size - 1ULL;
static constexpr u32 physical_address_base = 1U << page_bits;
static constexpr u32 MULTI_FLAG_BITS = 31;
static constexpr u32 MULTI_FLAG = 1U << MULTI_FLAG_BITS;
static constexpr u32 MULTI_MASK = ~MULTI_FLAG;
template <typename T>
T* GetPointerFromRaw(PAddr addr) {
return reinterpret_cast<T*>(physical_base + addr);
}
template <typename T>
const T* GetPointerFromRaw(PAddr addr) const {
return reinterpret_cast<T*>(physical_base + addr);
}
template <typename T>
PAddr GetRawPhysicalAddr(const T* ptr) const {
return static_cast<PAddr>(reinterpret_cast<uintptr_t>(ptr) - physical_base);
}
void WalkBlock(const DAddr addr, const std::size_t size, auto on_unmapped, auto on_memory,
auto increment);
void InnerGatherDeviceAddresses(Common::ScratchBuffer<u32>& buffer, PAddr address);
std::unique_ptr<DeviceMemoryManagerAllocator<Traits>> impl;
const uintptr_t physical_base;
DeviceInterface* device_inter;
Common::VirtualBuffer<u32> compressed_physical_ptr;
Common::VirtualBuffer<u32> compressed_device_addr;
Common::VirtualBuffer<u32> continuity_tracker;
// Process memory interfaces
std::deque<size_t> id_pool;
std::deque<Memory::Memory*> registered_processes;
// Memory protection management
static constexpr size_t guest_max_as_bits = 39;
static constexpr size_t guest_as_size = 1ULL << guest_max_as_bits;
static constexpr size_t guest_mask = guest_as_size - 1ULL;
static constexpr size_t process_id_start_bit = guest_max_as_bits;
std::pair<size_t, VAddr> ExtractCPUBacking(size_t page_index) {
auto content = cpu_backing_address[page_index];
const VAddr address = content & guest_mask;
const size_t process_id = static_cast<size_t>(content >> process_id_start_bit);
return std::make_pair(process_id, address);
}
void InsertCPUBacking(size_t page_index, VAddr address, size_t process_id) {
cpu_backing_address[page_index] = address | (process_id << process_id_start_bit);
}
Common::VirtualBuffer<VAddr> cpu_backing_address;
static constexpr size_t subentries = 8 / sizeof(u8);
static constexpr size_t subentries_mask = subentries - 1;
class CounterEntry final {
public:
CounterEntry() = default;
std::atomic_uint8_t& Count(std::size_t page) {
return values[page & subentries_mask];
}
const std::atomic_uint8_t& Count(std::size_t page) const {
return values[page & subentries_mask];
}
private:
std::array<std::atomic_uint8_t, subentries> values{};
};
static_assert(sizeof(CounterEntry) == subentries * sizeof(u8),
"CounterEntry should be 8 bytes!");
static constexpr size_t num_counter_entries =
(1ULL << (device_virtual_bits - page_bits)) / subentries;
using CachedPages = std::array<CounterEntry, num_counter_entries>;
std::unique_ptr<CachedPages> cached_pages;
std::mutex counter_guard;
std::mutex mapping_guard;
};
} // namespace Core

View file

@ -0,0 +1,588 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <atomic>
#include <limits>
#include <memory>
#include <type_traits>
#include "common/address_space.h"
#include "common/address_space.inc"
#include "common/alignment.h"
#include "common/assert.h"
#include "common/div_ceil.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/device_memory.h"
#include "core/device_memory_manager.h"
#include "core/memory.h"
namespace Core {
namespace {
class MultiAddressContainer {
public:
MultiAddressContainer() = default;
~MultiAddressContainer() = default;
void GatherValues(u32 start_entry, Common::ScratchBuffer<u32>& buffer) {
buffer.resize(8);
buffer.resize(0);
size_t index = 0;
const auto add_value = [&](u32 value) {
buffer[index] = value;
index++;
buffer.resize(index);
};
u32 iter_entry = start_entry;
Entry* current = &storage[iter_entry - 1];
add_value(current->value);
while (current->next_entry != 0) {
iter_entry = current->next_entry;
current = &storage[iter_entry - 1];
add_value(current->value);
}
}
u32 Register(u32 value) {
return RegisterImplementation(value);
}
void Register(u32 value, u32 start_entry) {
auto entry_id = RegisterImplementation(value);
u32 iter_entry = start_entry;
Entry* current = &storage[iter_entry - 1];
while (current->next_entry != 0) {
iter_entry = current->next_entry;
current = &storage[iter_entry - 1];
}
current->next_entry = entry_id;
}
std::pair<bool, u32> Unregister(u32 value, u32 start_entry) {
u32 iter_entry = start_entry;
Entry* previous{};
Entry* current = &storage[iter_entry - 1];
Entry* next{};
bool more_than_one_remaining = false;
u32 result_start{start_entry};
size_t count = 0;
while (current->value != value) {
count++;
previous = current;
iter_entry = current->next_entry;
current = &storage[iter_entry - 1];
}
// Find next
u32 next_entry = current->next_entry;
if (next_entry != 0) {
next = &storage[next_entry - 1];
more_than_one_remaining = next->next_entry != 0 || previous != nullptr;
}
if (previous) {
previous->next_entry = next_entry;
} else {
result_start = next_entry;
}
free_entries.emplace_back(iter_entry);
return std::make_pair(more_than_one_remaining || count > 1, result_start);
}
u32 ReleaseEntry(u32 start_entry) {
Entry* current = &storage[start_entry - 1];
free_entries.emplace_back(start_entry);
return current->value;
}
private:
u32 RegisterImplementation(u32 value) {
auto entry_id = GetNewEntry();
auto& entry = storage[entry_id - 1];
entry.next_entry = 0;
entry.value = value;
return entry_id;
}
u32 GetNewEntry() {
if (!free_entries.empty()) {
u32 result = free_entries.front();
free_entries.pop_front();
return result;
}
storage.emplace_back();
u32 new_entry = static_cast<u32>(storage.size());
return new_entry;
}
struct Entry {
u32 next_entry{};
u32 value{};
};
std::deque<Entry> storage;
std::deque<u32> free_entries;
};
struct EmptyAllocator {
EmptyAllocator([[maybe_unused]] DAddr address) {}
};
} // namespace
template <typename DTraits>
struct DeviceMemoryManagerAllocator {
static constexpr size_t device_virtual_bits = DTraits::device_virtual_bits;
static constexpr DAddr first_address = 1ULL << Memory::YUZU_PAGEBITS;
static constexpr DAddr max_device_area = 1ULL << device_virtual_bits;
DeviceMemoryManagerAllocator() : main_allocator(first_address) {}
Common::FlatAllocator<DAddr, 0, device_virtual_bits> main_allocator;
MultiAddressContainer multi_dev_address;
/// Returns true when vaddr -> vaddr+size is fully contained in the buffer
template <bool pin_area>
[[nodiscard]] bool IsInBounds(VAddr addr, u64 size) const noexcept {
return addr >= 0 && addr + size <= max_device_area;
}
DAddr Allocate(size_t size) {
return main_allocator.Allocate(size);
}
void AllocateFixed(DAddr b_address, size_t b_size) {
main_allocator.AllocateFixed(b_address, b_size);
}
void Free(DAddr b_address, size_t b_size) {
main_allocator.Free(b_address, b_size);
}
};
template <typename Traits>
DeviceMemoryManager<Traits>::DeviceMemoryManager(const DeviceMemory& device_memory_)
: physical_base{reinterpret_cast<const uintptr_t>(device_memory_.buffer.BackingBasePointer())},
device_inter{nullptr}, compressed_physical_ptr(device_as_size >> Memory::YUZU_PAGEBITS),
compressed_device_addr(1ULL << ((Settings::values.memory_layout_mode.GetValue() ==
Settings::MemoryLayout::Memory_4Gb
? physical_min_bits
: physical_max_bits) -
Memory::YUZU_PAGEBITS)),
continuity_tracker(device_as_size >> Memory::YUZU_PAGEBITS),
cpu_backing_address(device_as_size >> Memory::YUZU_PAGEBITS) {
impl = std::make_unique<DeviceMemoryManagerAllocator<Traits>>();
cached_pages = std::make_unique<CachedPages>();
const size_t total_virtual = device_as_size >> Memory::YUZU_PAGEBITS;
for (size_t i = 0; i < total_virtual; i++) {
compressed_physical_ptr[i] = 0;
continuity_tracker[i] = 1;
cpu_backing_address[i] = 0;
}
const size_t total_phys = 1ULL << ((Settings::values.memory_layout_mode.GetValue() ==
Settings::MemoryLayout::Memory_4Gb
? physical_min_bits
: physical_max_bits) -
Memory::YUZU_PAGEBITS);
for (size_t i = 0; i < total_phys; i++) {
compressed_device_addr[i] = 0;
}
}
template <typename Traits>
DeviceMemoryManager<Traits>::~DeviceMemoryManager() = default;
template <typename Traits>
void DeviceMemoryManager<Traits>::BindInterface(DeviceInterface* device_inter_) {
device_inter = device_inter_;
}
template <typename Traits>
DAddr DeviceMemoryManager<Traits>::Allocate(size_t size) {
return impl->Allocate(size);
}
template <typename Traits>
void DeviceMemoryManager<Traits>::AllocateFixed(DAddr start, size_t size) {
return impl->AllocateFixed(start, size);
}
template <typename Traits>
void DeviceMemoryManager<Traits>::Free(DAddr start, size_t size) {
impl->Free(start, size);
}
template <typename Traits>
void DeviceMemoryManager<Traits>::Map(DAddr address, VAddr virtual_address, size_t size,
size_t process_id, bool track) {
Core::Memory::Memory* process_memory = registered_processes[process_id];
size_t start_page_d = address >> Memory::YUZU_PAGEBITS;
size_t num_pages = Common::AlignUp(size, Memory::YUZU_PAGESIZE) >> Memory::YUZU_PAGEBITS;
std::scoped_lock lk(mapping_guard);
for (size_t i = 0; i < num_pages; i++) {
const VAddr new_vaddress = virtual_address + i * Memory::YUZU_PAGESIZE;
auto* ptr = process_memory->GetPointerSilent(Common::ProcessAddress(new_vaddress));
if (ptr == nullptr) [[unlikely]] {
compressed_physical_ptr[start_page_d + i] = 0;
continue;
}
auto phys_addr = static_cast<u32>(GetRawPhysicalAddr(ptr) >> Memory::YUZU_PAGEBITS) + 1U;
compressed_physical_ptr[start_page_d + i] = phys_addr;
InsertCPUBacking(start_page_d + i, new_vaddress, process_id);
const u32 base_dev = compressed_device_addr[phys_addr - 1U];
const u32 new_dev = static_cast<u32>(start_page_d + i);
if (base_dev == 0) [[likely]] {
compressed_device_addr[phys_addr - 1U] = new_dev;
continue;
}
u32 start_id = base_dev & MULTI_MASK;
if ((base_dev >> MULTI_FLAG_BITS) == 0) {
start_id = impl->multi_dev_address.Register(base_dev);
compressed_device_addr[phys_addr - 1U] = MULTI_FLAG | start_id;
}
impl->multi_dev_address.Register(new_dev, start_id);
}
if (track) {
TrackContinuityImpl(address, virtual_address, size, process_id);
}
}
template <typename Traits>
void DeviceMemoryManager<Traits>::Unmap(DAddr address, size_t size) {
size_t start_page_d = address >> Memory::YUZU_PAGEBITS;
size_t num_pages = Common::AlignUp(size, Memory::YUZU_PAGESIZE) >> Memory::YUZU_PAGEBITS;
device_inter->InvalidateRegion(address, size);
std::scoped_lock lk(mapping_guard);
for (size_t i = 0; i < num_pages; i++) {
auto phys_addr = compressed_physical_ptr[start_page_d + i];
compressed_physical_ptr[start_page_d + i] = 0;
cpu_backing_address[start_page_d + i] = 0;
if (phys_addr != 0) [[likely]] {
const u32 base_dev = compressed_device_addr[phys_addr - 1U];
if ((base_dev >> MULTI_FLAG_BITS) == 0) [[likely]] {
compressed_device_addr[phys_addr - 1] = 0;
continue;
}
const auto [more_entries, new_start] = impl->multi_dev_address.Unregister(
static_cast<u32>(start_page_d + i), base_dev & MULTI_MASK);
if (!more_entries) {
compressed_device_addr[phys_addr - 1] =
impl->multi_dev_address.ReleaseEntry(new_start);
continue;
}
compressed_device_addr[phys_addr - 1] = new_start | MULTI_FLAG;
}
}
}
template <typename Traits>
void DeviceMemoryManager<Traits>::TrackContinuityImpl(DAddr address, VAddr virtual_address,
size_t size, size_t process_id) {
Core::Memory::Memory* process_memory = registered_processes[process_id];
size_t start_page_d = address >> Memory::YUZU_PAGEBITS;
size_t num_pages = Common::AlignUp(size, Memory::YUZU_PAGESIZE) >> Memory::YUZU_PAGEBITS;
uintptr_t last_ptr = 0;
size_t page_count = 1;
for (size_t i = num_pages; i > 0; i--) {
size_t index = i - 1;
const VAddr new_vaddress = virtual_address + index * Memory::YUZU_PAGESIZE;
const uintptr_t new_ptr = reinterpret_cast<uintptr_t>(
process_memory->GetPointerSilent(Common::ProcessAddress(new_vaddress)));
if (new_ptr + page_size == last_ptr) {
page_count++;
} else {
page_count = 1;
}
last_ptr = new_ptr;
continuity_tracker[start_page_d + index] = static_cast<u32>(page_count);
}
}
template <typename Traits>
u8* DeviceMemoryManager<Traits>::GetSpan(const DAddr src_addr, const std::size_t size) {
size_t page_index = src_addr >> page_bits;
size_t subbits = src_addr & page_mask;
if ((static_cast<size_t>(continuity_tracker[page_index]) << page_bits) >= size + subbits) {
return GetPointer<u8>(src_addr);
}
return nullptr;
}
template <typename Traits>
const u8* DeviceMemoryManager<Traits>::GetSpan(const DAddr src_addr, const std::size_t size) const {
size_t page_index = src_addr >> page_bits;
size_t subbits = src_addr & page_mask;
if ((static_cast<size_t>(continuity_tracker[page_index]) << page_bits) >= size + subbits) {
return GetPointer<u8>(src_addr);
}
return nullptr;
}
template <typename Traits>
void DeviceMemoryManager<Traits>::InnerGatherDeviceAddresses(Common::ScratchBuffer<u32>& buffer,
PAddr address) {
size_t phys_addr = address >> page_bits;
std::scoped_lock lk(mapping_guard);
u32 backing = compressed_device_addr[phys_addr];
if ((backing >> MULTI_FLAG_BITS) != 0) {
impl->multi_dev_address.GatherValues(backing & MULTI_MASK, buffer);
return;
}
buffer.resize(1);
buffer[0] = backing;
}
template <typename Traits>
template <typename T>
T* DeviceMemoryManager<Traits>::GetPointer(DAddr address) {
const size_t index = address >> Memory::YUZU_PAGEBITS;
const size_t offset = address & Memory::YUZU_PAGEMASK;
auto phys_addr = compressed_physical_ptr[index];
if (phys_addr == 0) [[unlikely]] {
return nullptr;
}
return GetPointerFromRaw<T>((static_cast<PAddr>(phys_addr - 1) << Memory::YUZU_PAGEBITS) +
offset);
}
template <typename Traits>
template <typename T>
const T* DeviceMemoryManager<Traits>::GetPointer(DAddr address) const {
const size_t index = address >> Memory::YUZU_PAGEBITS;
const size_t offset = address & Memory::YUZU_PAGEMASK;
auto phys_addr = compressed_physical_ptr[index];
if (phys_addr == 0) [[unlikely]] {
return nullptr;
}
return GetPointerFromRaw<T>((static_cast<PAddr>(phys_addr - 1) << Memory::YUZU_PAGEBITS) +
offset);
}
template <typename Traits>
template <typename T>
void DeviceMemoryManager<Traits>::Write(DAddr address, T value) {
T* ptr = GetPointer<T>(address);
if (!ptr) [[unlikely]] {
return;
}
std::memcpy(ptr, &value, sizeof(T));
}
template <typename Traits>
template <typename T>
T DeviceMemoryManager<Traits>::Read(DAddr address) const {
const T* ptr = GetPointer<T>(address);
T result{};
if (!ptr) [[unlikely]] {
return result;
}
std::memcpy(&result, ptr, sizeof(T));
return result;
}
template <typename Traits>
void DeviceMemoryManager<Traits>::WalkBlock(DAddr addr, std::size_t size, auto on_unmapped,
auto on_memory, auto increment) {
std::size_t remaining_size = size;
std::size_t page_index = addr >> Memory::YUZU_PAGEBITS;
std::size_t page_offset = addr & Memory::YUZU_PAGEMASK;
while (remaining_size) {
const size_t next_pages = static_cast<std::size_t>(continuity_tracker[page_index]);
const std::size_t copy_amount =
std::min((next_pages << Memory::YUZU_PAGEBITS) - page_offset, remaining_size);
const auto current_vaddr =
static_cast<u64>((page_index << Memory::YUZU_PAGEBITS) + page_offset);
SCOPE_EXIT({
page_index += next_pages;
page_offset = 0;
increment(copy_amount);
remaining_size -= copy_amount;
});
auto phys_addr = compressed_physical_ptr[page_index];
if (phys_addr == 0) {
on_unmapped(copy_amount, current_vaddr);
continue;
}
auto* mem_ptr = GetPointerFromRaw<u8>(
(static_cast<PAddr>(phys_addr - 1) << Memory::YUZU_PAGEBITS) + page_offset);
on_memory(copy_amount, mem_ptr);
}
}
template <typename Traits>
void DeviceMemoryManager<Traits>::ReadBlock(DAddr address, void* dest_pointer, size_t size) {
device_inter->FlushRegion(address, size);
WalkBlock(
address, size,
[&](size_t copy_amount, DAddr current_vaddr) {
LOG_ERROR(
HW_Memory,
"Unmapped Device ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, address, size);
std::memset(dest_pointer, 0, copy_amount);
},
[&](size_t copy_amount, const u8* const src_ptr) {
std::memcpy(dest_pointer, src_ptr, copy_amount);
},
[&](const std::size_t copy_amount) {
dest_pointer = static_cast<u8*>(dest_pointer) + copy_amount;
});
}
template <typename Traits>
void DeviceMemoryManager<Traits>::WriteBlock(DAddr address, const void* src_pointer, size_t size) {
WalkBlock(
address, size,
[&](size_t copy_amount, DAddr current_vaddr) {
LOG_ERROR(
HW_Memory,
"Unmapped Device WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, address, size);
},
[&](size_t copy_amount, u8* const dst_ptr) {
std::memcpy(dst_ptr, src_pointer, copy_amount);
},
[&](const std::size_t copy_amount) {
src_pointer = static_cast<const u8*>(src_pointer) + copy_amount;
});
device_inter->InvalidateRegion(address, size);
}
template <typename Traits>
void DeviceMemoryManager<Traits>::ReadBlockUnsafe(DAddr address, void* dest_pointer, size_t size) {
WalkBlock(
address, size,
[&](size_t copy_amount, DAddr current_vaddr) {
LOG_ERROR(
HW_Memory,
"Unmapped Device ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, address, size);
std::memset(dest_pointer, 0, copy_amount);
},
[&](size_t copy_amount, const u8* const src_ptr) {
std::memcpy(dest_pointer, src_ptr, copy_amount);
},
[&](const std::size_t copy_amount) {
dest_pointer = static_cast<u8*>(dest_pointer) + copy_amount;
});
}
template <typename Traits>
void DeviceMemoryManager<Traits>::WriteBlockUnsafe(DAddr address, const void* src_pointer,
size_t size) {
WalkBlock(
address, size,
[&](size_t copy_amount, DAddr current_vaddr) {
LOG_ERROR(
HW_Memory,
"Unmapped Device WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, address, size);
},
[&](size_t copy_amount, u8* const dst_ptr) {
std::memcpy(dst_ptr, src_pointer, copy_amount);
},
[&](const std::size_t copy_amount) {
src_pointer = static_cast<const u8*>(src_pointer) + copy_amount;
});
}
template <typename Traits>
size_t DeviceMemoryManager<Traits>::RegisterProcess(Memory::Memory* memory_device_inter) {
size_t new_id;
if (!id_pool.empty()) {
new_id = id_pool.front();
id_pool.pop_front();
registered_processes[new_id] = memory_device_inter;
} else {
registered_processes.emplace_back(memory_device_inter);
new_id = registered_processes.size() - 1U;
}
return new_id;
}
template <typename Traits>
void DeviceMemoryManager<Traits>::UnregisterProcess(size_t id) {
registered_processes[id] = nullptr;
id_pool.push_front(id);
}
template <typename Traits>
void DeviceMemoryManager<Traits>::UpdatePagesCachedCount(DAddr addr, size_t size, s32 delta) {
bool locked = false;
auto lock = [&] {
if (!locked) {
counter_guard.lock();
locked = true;
}
};
SCOPE_EXIT({
if (locked) {
counter_guard.unlock();
}
});
u64 uncache_begin = 0;
u64 cache_begin = 0;
u64 uncache_bytes = 0;
u64 cache_bytes = 0;
const auto MarkRegionCaching = &DeviceMemoryManager<Traits>::DeviceMethods::MarkRegionCaching;
std::atomic_thread_fence(std::memory_order_acquire);
const size_t page_end = Common::DivCeil(addr + size, Memory::YUZU_PAGESIZE);
size_t page = addr >> Memory::YUZU_PAGEBITS;
auto [process_id, base_vaddress] = ExtractCPUBacking(page);
size_t vpage = base_vaddress >> Memory::YUZU_PAGEBITS;
auto* memory_device_inter = registered_processes[process_id];
for (; page != page_end; ++page) {
std::atomic_uint8_t& count = cached_pages->at(page >> 3).Count(page);
if (delta > 0) {
ASSERT_MSG(count.load(std::memory_order::relaxed) < std::numeric_limits<u8>::max(),
"Count may overflow!");
} else if (delta < 0) {
ASSERT_MSG(count.load(std::memory_order::relaxed) > 0, "Count may underflow!");
} else {
ASSERT_MSG(false, "Delta must be non-zero!");
}
// Adds or subtracts 1, as count is a unsigned 8-bit value
count.fetch_add(static_cast<u8>(delta), std::memory_order_release);
// Assume delta is either -1 or 1
if (count.load(std::memory_order::relaxed) == 0) {
if (uncache_bytes == 0) {
uncache_begin = vpage;
}
uncache_bytes += Memory::YUZU_PAGESIZE;
} else if (uncache_bytes > 0) {
lock();
MarkRegionCaching(memory_device_inter, uncache_begin << Memory::YUZU_PAGEBITS,
uncache_bytes, false);
uncache_bytes = 0;
}
if (count.load(std::memory_order::relaxed) == 1 && delta > 0) {
if (cache_bytes == 0) {
cache_begin = vpage;
}
cache_bytes += Memory::YUZU_PAGESIZE;
} else if (cache_bytes > 0) {
lock();
MarkRegionCaching(memory_device_inter, cache_begin << Memory::YUZU_PAGEBITS, cache_bytes,
true);
cache_bytes = 0;
}
vpage++;
}
if (uncache_bytes > 0) {
lock();
MarkRegionCaching(memory_device_inter, uncache_begin << Memory::YUZU_PAGEBITS, uncache_bytes,
false);
}
if (cache_bytes > 0) {
lock();
MarkRegionCaching(memory_device_inter, cache_begin << Memory::YUZU_PAGEBITS, cache_bytes,
true);
}
}
} // namespace Core

View file

@ -10,7 +10,7 @@
#include <utility>
#include <vector>
#include "core/memory.h"
#include "core/device_memory_manager.h"
namespace Core {
@ -23,7 +23,7 @@ public:
~GPUDirtyMemoryManager() = default;
void Collect(VAddr address, size_t size) {
void Collect(PAddr address, size_t size) {
TransformAddress t = BuildTransform(address, size);
TransformAddress tmp, original;
do {
@ -47,7 +47,7 @@ public:
std::memory_order_relaxed));
}
void Gather(std::function<void(VAddr, size_t)>& callback) {
void Gather(std::function<void(PAddr, size_t)>& callback) {
{
std::scoped_lock lk(guard);
TransformAddress t = current.exchange(default_transform, std::memory_order_relaxed);
@ -65,7 +65,7 @@ public:
mask = mask >> empty_bits;
const size_t continuous_bits = std::countr_one(mask);
callback((static_cast<VAddr>(transform.address) << page_bits) + offset,
callback((static_cast<PAddr>(transform.address) << page_bits) + offset,
continuous_bits << align_bits);
mask = continuous_bits < align_size ? (mask >> continuous_bits) : 0;
offset += continuous_bits << align_bits;
@ -80,7 +80,7 @@ private:
u32 mask;
};
constexpr static size_t page_bits = Memory::YUZU_PAGEBITS - 1;
constexpr static size_t page_bits = DEVICE_PAGEBITS - 1;
constexpr static size_t page_size = 1ULL << page_bits;
constexpr static size_t page_mask = page_size - 1;
@ -89,7 +89,7 @@ private:
constexpr static size_t align_mask = align_size - 1;
constexpr static TransformAddress default_transform = {.address = ~0U, .mask = 0U};
bool IsValid(VAddr address) {
bool IsValid(PAddr address) {
return address < (1ULL << 39);
}
@ -103,7 +103,7 @@ private:
return mask;
}
TransformAddress BuildTransform(VAddr address, size_t size) {
TransformAddress BuildTransform(PAddr address, size_t size) {
const size_t minor_address = address & page_mask;
const size_t minor_bit = minor_address >> align_bits;
const size_t top_bit = (minor_address + size + align_mask) >> align_bits;

214
src/core/guest_memory.h Executable file
View file

@ -0,0 +1,214 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <iterator>
#include <memory>
#include <optional>
#include <span>
#include <vector>
#include "common/assert.h"
#include "common/scratch_buffer.h"
namespace Core::Memory {
enum GuestMemoryFlags : u32 {
Read = 1 << 0,
Write = 1 << 1,
Safe = 1 << 2,
Cached = 1 << 3,
SafeRead = Read | Safe,
SafeWrite = Write | Safe,
SafeReadWrite = SafeRead | SafeWrite,
SafeReadCachedWrite = SafeReadWrite | Cached,
UnsafeRead = Read,
UnsafeWrite = Write,
UnsafeReadWrite = UnsafeRead | UnsafeWrite,
UnsafeReadCachedWrite = UnsafeReadWrite | Cached,
};
namespace {
template <typename M, typename T, GuestMemoryFlags FLAGS>
class GuestMemory {
using iterator = T*;
using const_iterator = const T*;
using value_type = T;
using element_type = T;
using iterator_category = std::contiguous_iterator_tag;
public:
GuestMemory() = delete;
explicit GuestMemory(M& memory, u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr)
: m_memory{memory}, m_addr{addr}, m_size{size} {
static_assert(FLAGS & GuestMemoryFlags::Read || FLAGS & GuestMemoryFlags::Write);
if constexpr (FLAGS & GuestMemoryFlags::Read) {
Read(addr, size, backup);
}
}
~GuestMemory() = default;
T* data() noexcept {
return m_data_span.data();
}
const T* data() const noexcept {
return m_data_span.data();
}
size_t size() const noexcept {
return m_size;
}
size_t size_bytes() const noexcept {
return this->size() * sizeof(T);
}
[[nodiscard]] T* begin() noexcept {
return this->data();
}
[[nodiscard]] const T* begin() const noexcept {
return this->data();
}
[[nodiscard]] T* end() noexcept {
return this->data() + this->size();
}
[[nodiscard]] const T* end() const noexcept {
return this->data() + this->size();
}
T& operator[](size_t index) noexcept {
return m_data_span[index];
}
const T& operator[](size_t index) const noexcept {
return m_data_span[index];
}
void SetAddressAndSize(u64 addr, std::size_t size) noexcept {
m_addr = addr;
m_size = size;
m_addr_changed = true;
}
std::span<T> Read(u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr) noexcept {
m_addr = addr;
m_size = size;
if (m_size == 0) {
m_is_data_copy = true;
return {};
}
if (this->TrySetSpan()) {
if constexpr (FLAGS & GuestMemoryFlags::Safe) {
m_memory.FlushRegion(m_addr, this->size_bytes());
}
} else {
if (backup) {
backup->resize_destructive(this->size());
m_data_span = *backup;
} else {
m_data_copy.resize(this->size());
m_data_span = std::span(m_data_copy);
}
m_is_data_copy = true;
m_span_valid = true;
if constexpr (FLAGS & GuestMemoryFlags::Safe) {
m_memory.ReadBlock(m_addr, this->data(), this->size_bytes());
} else {
m_memory.ReadBlockUnsafe(m_addr, this->data(), this->size_bytes());
}
}
return m_data_span;
}
void Write(std::span<T> write_data) noexcept {
if constexpr (FLAGS & GuestMemoryFlags::Cached) {
m_memory.WriteBlockCached(m_addr, write_data.data(), this->size_bytes());
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
m_memory.WriteBlock(m_addr, write_data.data(), this->size_bytes());
} else {
m_memory.WriteBlockUnsafe(m_addr, write_data.data(), this->size_bytes());
}
}
bool TrySetSpan() noexcept {
if (u8* ptr = m_memory.GetSpan(m_addr, this->size_bytes()); ptr) {
m_data_span = {reinterpret_cast<T*>(ptr), this->size()};
m_span_valid = true;
return true;
}
return false;
}
protected:
bool IsDataCopy() const noexcept {
return m_is_data_copy;
}
bool AddressChanged() const noexcept {
return m_addr_changed;
}
M& m_memory;
u64 m_addr{};
size_t m_size{};
std::span<T> m_data_span{};
std::vector<T> m_data_copy{};
bool m_span_valid{false};
bool m_is_data_copy{false};
bool m_addr_changed{false};
};
template <typename M, typename T, GuestMemoryFlags FLAGS>
class GuestMemoryScoped : public GuestMemory<M, T, FLAGS> {
public:
GuestMemoryScoped() = delete;
explicit GuestMemoryScoped(M& memory, u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr)
: GuestMemory<M, T, FLAGS>(memory, addr, size, backup) {
if constexpr (!(FLAGS & GuestMemoryFlags::Read)) {
if (!this->TrySetSpan()) {
if (backup) {
this->m_data_span = *backup;
this->m_span_valid = true;
this->m_is_data_copy = true;
}
}
}
}
~GuestMemoryScoped() {
if constexpr (FLAGS & GuestMemoryFlags::Write) {
if (this->size() == 0) [[unlikely]] {
return;
}
if (this->AddressChanged() || this->IsDataCopy()) {
ASSERT(this->m_span_valid);
if constexpr (FLAGS & GuestMemoryFlags::Cached) {
this->m_memory.WriteBlockCached(this->m_addr, this->data(), this->size_bytes());
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
this->m_memory.WriteBlock(this->m_addr, this->data(), this->size_bytes());
} else {
this->m_memory.WriteBlockUnsafe(this->m_addr, this->data(), this->size_bytes());
}
} else if constexpr ((FLAGS & GuestMemoryFlags::Safe) ||
(FLAGS & GuestMemoryFlags::Cached)) {
this->m_memory.InvalidateRegion(this->m_addr, this->size_bytes());
}
}
}
};
} // namespace
} // namespace Core::Memory

View file

@ -5,6 +5,7 @@
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/gpu_dirty_memory_manager.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_shared_memory.h"
@ -314,7 +315,7 @@ Result KProcess::Initialize(const Svc::CreateProcessParameter& params, const KPa
// Ensure our memory is initialized.
m_memory.SetCurrentPageTable(*this);
m_memory.SetGPUDirtyManagers(m_dirty_memory_managers);
m_memory.SetGPUDirtyManagers(m_kernel.System().GetGPUDirtyMemoryManager());
// Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize,
@ -411,7 +412,7 @@ Result KProcess::Initialize(const Svc::CreateProcessParameter& params,
// Ensure our memory is initialized.
m_memory.SetCurrentPageTable(*this);
m_memory.SetGPUDirtyManagers(m_dirty_memory_managers);
m_memory.SetGPUDirtyManagers(m_kernel.System().GetGPUDirtyMemoryManager());
// Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code),
@ -1135,8 +1136,7 @@ void KProcess::Switch(KProcess* cur_process, KProcess* next_process) {}
KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel},
m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()},
m_handle_table{kernel}, m_dirty_memory_managers{},
m_exclusive_monitor{}, m_memory{kernel.System()} {}
m_handle_table{kernel}, m_exclusive_monitor{}, m_memory{kernel.System()} {}
KProcess::~KProcess() = default;
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
@ -1318,10 +1318,4 @@ bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointT
return true;
}
void KProcess::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) {
for (auto& manager : m_dirty_memory_managers) {
manager.Gather(callback);
}
}
} // namespace Kernel

View file

@ -7,7 +7,6 @@
#include "core/arm/arm_interface.h"
#include "core/file_sys/program_metadata.h"
#include "core/gpu_dirty_memory_manager.h"
#include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_capabilities.h"
@ -128,7 +127,6 @@ private:
#ifdef HAS_NCE
std::unordered_map<u64, u64> m_post_handlers{};
#endif
std::array<Core::GPUDirtyMemoryManager, Core::Hardware::NUM_CPU_CORES> m_dirty_memory_managers;
std::unique_ptr<Core::ExclusiveMonitor> m_exclusive_monitor;
Core::Memory::Memory m_memory;
@ -511,8 +509,6 @@ public:
return m_memory;
}
void GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback);
Core::ExclusiveMonitor& GetExclusiveMonitor() const {
return *m_exclusive_monitor;
}

View file

@ -12,6 +12,7 @@
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/scratch_buffer.h"
#include "core/guest_memory.h"
#include "core/hle/kernel/k_auto_object.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_process.h"
@ -344,9 +345,9 @@ std::vector<u8> HLERequestContext::ReadBufferCopy(std::size_t buffer_index) cons
std::span<const u8> HLERequestContext::ReadBufferA(std::size_t buffer_index) const {
static thread_local std::array read_buffer_a{
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
};
ASSERT_OR_EXECUTE_MSG(
@ -360,9 +361,9 @@ std::span<const u8> HLERequestContext::ReadBufferA(std::size_t buffer_index) con
std::span<const u8> HLERequestContext::ReadBufferX(std::size_t buffer_index) const {
static thread_local std::array read_buffer_x{
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
};
ASSERT_OR_EXECUTE_MSG(
@ -376,14 +377,14 @@ std::span<const u8> HLERequestContext::ReadBufferX(std::size_t buffer_index) con
std::span<const u8> HLERequestContext::ReadBuffer(std::size_t buffer_index) const {
static thread_local std::array read_buffer_a{
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
};
static thread_local std::array read_buffer_x{
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead>(memory, 0, 0),
};
const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&

View file

@ -41,6 +41,8 @@ class KernelCore;
class KHandleTable;
class KProcess;
class KServerSession;
template <typename T>
class KScopedAutoObject;
class KThread;
} // namespace Kernel

View file

@ -2,27 +2,134 @@
// SPDX-FileCopyrightText: 2022 Skyline Team and Contributors
// SPDX-License-Identifier: GPL-3.0-or-later
#include <atomic>
#include <deque>
#include <mutex>
#include "core/hle/kernel/k_process.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/heap_mapper.h"
#include "core/hle/service/nvdrv/core/nvmap.h"
#include "core/hle/service/nvdrv/core/syncpoint_manager.h"
#include "core/memory.h"
#include "video_core/host1x/host1x.h"
namespace Service::Nvidia::NvCore {
Session::Session(size_t id_, Kernel::KProcess* process_, size_t smmu_id_)
: id{id_}, process{process_}, smmu_id{smmu_id_},
has_preallocated_area{}, mapper{}, is_active{} {}
Session::~Session() = default;
struct ContainerImpl {
explicit ContainerImpl(Tegra::Host1x::Host1x& host1x_)
: file{host1x_}, manager{host1x_}, device_file_data{} {}
explicit ContainerImpl(Container& core, Tegra::Host1x::Host1x& host1x_)
: host1x{host1x_}, file{core, host1x_}, manager{host1x_}, device_file_data{} {}
Tegra::Host1x::Host1x& host1x;
NvMap file;
SyncpointManager manager;
Container::Host1xDeviceFileData device_file_data;
std::deque<Session> sessions;
size_t new_ids{};
std::deque<size_t> id_pool;
std::mutex session_guard;
};
Container::Container(Tegra::Host1x::Host1x& host1x_) {
impl = std::make_unique<ContainerImpl>(host1x_);
impl = std::make_unique<ContainerImpl>(*this, host1x_);
}
Container::~Container() = default;
size_t Container::OpenSession(Kernel::KProcess* process) {
std::scoped_lock lk(impl->session_guard);
for (auto& session : impl->sessions) {
if (!session.is_active) {
continue;
}
if (session.process == process) {
return session.id;
}
}
size_t new_id{};
auto* memory_interface = &process->GetMemory();
auto& smmu = impl->host1x.MemoryManager();
auto smmu_id = smmu.RegisterProcess(memory_interface);
if (!impl->id_pool.empty()) {
new_id = impl->id_pool.front();
impl->id_pool.pop_front();
impl->sessions[new_id] = Session{new_id, process, smmu_id};
} else {
new_id = impl->new_ids++;
impl->sessions.emplace_back(new_id, process, smmu_id);
}
auto& session = impl->sessions[new_id];
session.is_active = true;
// Optimization
if (process->IsApplication()) {
auto& page_table = process->GetPageTable().GetBasePageTable();
auto heap_start = page_table.GetHeapRegionStart();
Kernel::KProcessAddress cur_addr = heap_start;
size_t region_size = 0;
VAddr region_start = 0;
while (true) {
Kernel::KMemoryInfo mem_info{};
Kernel::Svc::PageInfo page_info{};
R_ASSERT(page_table.QueryInfo(std::addressof(mem_info), std::addressof(page_info),
cur_addr));
auto svc_mem_info = mem_info.GetSvcMemoryInfo();
// check if this memory block is heap
if (svc_mem_info.state == Kernel::Svc::MemoryState::Normal) {
if (svc_mem_info.size > region_size) {
region_size = svc_mem_info.size;
region_start = svc_mem_info.base_address;
}
}
// Check if we're done.
const uintptr_t next_address = svc_mem_info.base_address + svc_mem_info.size;
if (next_address <= GetInteger(cur_addr)) {
break;
}
cur_addr = next_address;
}
session.has_preallocated_area = false;
auto start_region = (region_size >> 15) >= 1024 ? smmu.Allocate(region_size) : 0;
if (start_region != 0) {
session.mapper = std::make_unique<HeapMapper>(region_start, start_region, region_size,
smmu_id, impl->host1x);
smmu.TrackContinuity(start_region, region_start, region_size, smmu_id);
session.has_preallocated_area = true;
LOG_CRITICAL(Debug, "Preallocation created!");
}
}
return new_id;
}
void Container::CloseSession(size_t id) {
std::scoped_lock lk(impl->session_guard);
auto& session = impl->sessions[id];
auto& smmu = impl->host1x.MemoryManager();
if (session.has_preallocated_area) {
const DAddr region_start = session.mapper->GetRegionStart();
const size_t region_size = session.mapper->GetRegionSize();
session.mapper.reset();
smmu.Free(region_start, region_size);
session.has_preallocated_area = false;
}
session.is_active = false;
smmu.UnregisterProcess(impl->sessions[id].smmu_id);
impl->id_pool.emplace_front(id);
}
Session* Container::GetSession(size_t id) {
std::atomic_thread_fence(std::memory_order_acquire);
return &impl->sessions[id];
}
NvMap& Container::GetNvMapFile() {
return impl->file;
}

View file

@ -10,22 +10,49 @@
#include "core/hle/service/nvdrv/nvdata.h"
namespace Kernel {
class KProcess;
}
namespace Tegra::Host1x {
class Host1x;
} // namespace Tegra::Host1x
namespace Service::Nvidia::NvCore {
class HeapMapper;
class NvMap;
class SyncpointManager;
struct ContainerImpl;
struct Session {
Session(size_t id_, Kernel::KProcess* process_, size_t smmu_id_);
~Session();
Session(const Session&) = delete;
Session& operator=(const Session&) = delete;
Session(Session&&) = default;
Session& operator=(Session&&) = default;
size_t id;
Kernel::KProcess* process;
size_t smmu_id;
bool has_preallocated_area{};
std::unique_ptr<HeapMapper> mapper{};
bool is_active{};
};
class Container {
public:
explicit Container(Tegra::Host1x::Host1x& host1x);
~Container();
size_t OpenSession(Kernel::KProcess* process);
void CloseSession(size_t id);
Session* GetSession(size_t id);
NvMap& GetNvMapFile();
const NvMap& GetNvMapFile() const;

View file

@ -0,0 +1,175 @@
// SPDX-FileCopyrightText: 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#include <mutex>
#include <boost/container/small_vector.hpp>
#define BOOST_NO_MT
#include <boost/pool/detail/mutex.hpp>
#undef BOOST_NO_MT
#include <boost/icl/interval.hpp>
#include <boost/icl/interval_base_set.hpp>
#include <boost/icl/interval_set.hpp>
#include <boost/icl/split_interval_map.hpp>
#include <boost/pool/pool.hpp>
#include <boost/pool/pool_alloc.hpp>
#include <boost/pool/poolfwd.hpp>
#include "core/hle/service/nvdrv/core/heap_mapper.h"
#include "video_core/host1x/host1x.h"
namespace boost {
template <typename T>
class fast_pool_allocator<T, default_user_allocator_new_delete, details::pool::null_mutex, 4096, 0>;
}
namespace Service::Nvidia::NvCore {
using IntervalCompare = std::less<DAddr>;
using IntervalInstance = boost::icl::interval_type_default<DAddr, std::less>;
using IntervalAllocator = boost::fast_pool_allocator<DAddr>;
using IntervalSet = boost::icl::interval_set<DAddr>;
using IntervalType = typename IntervalSet::interval_type;
template <typename Type>
struct counter_add_functor : public boost::icl::identity_based_inplace_combine<Type> {
// types
typedef counter_add_functor<Type> type;
typedef boost::icl::identity_based_inplace_combine<Type> base_type;
// public member functions
void operator()(Type& current, const Type& added) const {
current += added;
if (current < base_type::identity_element()) {
current = base_type::identity_element();
}
}
// public static functions
static void version(Type&){};
};
using OverlapCombine = counter_add_functor<int>;
using OverlapSection = boost::icl::inter_section<int>;
using OverlapCounter = boost::icl::split_interval_map<DAddr, int>;
struct HeapMapper::HeapMapperInternal {
HeapMapperInternal(Tegra::Host1x::Host1x& host1x) : device_memory{host1x.MemoryManager()} {}
~HeapMapperInternal() = default;
template <typename Func>
void ForEachInOverlapCounter(OverlapCounter& current_range, VAddr cpu_addr, u64 size,
Func&& func) {
const DAddr start_address = cpu_addr;
const DAddr end_address = start_address + size;
const IntervalType search_interval{start_address, end_address};
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
auto& inter = it->first;
DAddr inter_addr_end = inter.upper();
DAddr inter_addr = inter.lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
if (inter_addr < start_address) {
inter_addr = start_address;
}
func(inter_addr, inter_addr_end, it->second);
}
}
void RemoveEachInOverlapCounter(OverlapCounter& current_range,
const IntervalType search_interval, int subtract_value) {
bool any_removals = false;
current_range.add(std::make_pair(search_interval, subtract_value));
do {
any_removals = false;
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
return;
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
if (it->second <= 0) {
any_removals = true;
current_range.erase(it);
break;
}
}
} while (any_removals);
}
IntervalSet base_set;
OverlapCounter mapping_overlaps;
Tegra::MaxwellDeviceMemoryManager& device_memory;
std::mutex guard;
};
HeapMapper::HeapMapper(VAddr start_vaddress, DAddr start_daddress, size_t size, size_t smmu_id,
Tegra::Host1x::Host1x& host1x)
: m_vaddress{start_vaddress}, m_daddress{start_daddress}, m_size{size}, m_smmu_id{smmu_id} {
m_internal = std::make_unique<HeapMapperInternal>(host1x);
}
HeapMapper::~HeapMapper() {
m_internal->device_memory.Unmap(m_daddress, m_size);
}
DAddr HeapMapper::Map(VAddr start, size_t size) {
std::scoped_lock lk(m_internal->guard);
m_internal->base_set.clear();
const IntervalType interval{start, start + size};
m_internal->base_set.insert(interval);
m_internal->ForEachInOverlapCounter(m_internal->mapping_overlaps, start, size,
[this](VAddr start_addr, VAddr end_addr, int) {
const IntervalType other{start_addr, end_addr};
m_internal->base_set.subtract(other);
});
if (!m_internal->base_set.empty()) {
auto it = m_internal->base_set.begin();
auto end_it = m_internal->base_set.end();
for (; it != end_it; it++) {
const VAddr inter_addr_end = it->upper();
const VAddr inter_addr = it->lower();
const size_t offset = inter_addr - m_vaddress;
const size_t sub_size = inter_addr_end - inter_addr;
m_internal->device_memory.Map(m_daddress + offset, m_vaddress + offset, sub_size,
m_smmu_id);
}
}
m_internal->mapping_overlaps += std::make_pair(interval, 1);
m_internal->base_set.clear();
return m_daddress + (start - m_vaddress);
}
void HeapMapper::Unmap(VAddr start, size_t size) {
std::scoped_lock lk(m_internal->guard);
m_internal->base_set.clear();
m_internal->ForEachInOverlapCounter(m_internal->mapping_overlaps, start, size,
[this](VAddr start_addr, VAddr end_addr, int value) {
if (value <= 1) {
const IntervalType other{start_addr, end_addr};
m_internal->base_set.insert(other);
}
});
if (!m_internal->base_set.empty()) {
auto it = m_internal->base_set.begin();
auto end_it = m_internal->base_set.end();
for (; it != end_it; it++) {
const VAddr inter_addr_end = it->upper();
const VAddr inter_addr = it->lower();
const size_t offset = inter_addr - m_vaddress;
const size_t sub_size = inter_addr_end - inter_addr;
m_internal->device_memory.Unmap(m_daddress + offset, sub_size);
}
}
const IntervalType to_remove{start, start + size};
m_internal->RemoveEachInOverlapCounter(m_internal->mapping_overlaps, to_remove, -1);
m_internal->base_set.clear();
}
} // namespace Service::Nvidia::NvCore

View file

@ -0,0 +1,48 @@
// SPDX-FileCopyrightText: 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#pragma once
#include <memory>
#include "common/common_types.h"
namespace Tegra::Host1x {
class Host1x;
} // namespace Tegra::Host1x
namespace Service::Nvidia::NvCore {
class HeapMapper {
public:
HeapMapper(VAddr start_vaddress, DAddr start_daddress, size_t size, size_t smmu_id,
Tegra::Host1x::Host1x& host1x);
~HeapMapper();
bool IsInBounds(VAddr start, size_t size) const {
VAddr end = start + size;
return start >= m_vaddress && end <= (m_vaddress + m_size);
}
DAddr Map(VAddr start, size_t size);
void Unmap(VAddr start, size_t size);
DAddr GetRegionStart() const {
return m_daddress;
}
size_t GetRegionSize() const {
return m_size;
}
private:
struct HeapMapperInternal;
VAddr m_vaddress;
DAddr m_daddress;
size_t m_size;
size_t m_smmu_id;
std::unique_ptr<HeapMapperInternal> m_internal;
};
} // namespace Service::Nvidia::NvCore

View file

@ -2,14 +2,19 @@
// SPDX-FileCopyrightText: 2022 Skyline Team and Contributors
// SPDX-License-Identifier: GPL-3.0-or-later
#include <functional>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/heap_mapper.h"
#include "core/hle/service/nvdrv/core/nvmap.h"
#include "core/memory.h"
#include "video_core/host1x/host1x.h"
using Core::Memory::YUZU_PAGESIZE;
constexpr size_t BIG_PAGE_SIZE = YUZU_PAGESIZE * 16;
namespace Service::Nvidia::NvCore {
NvMap::Handle::Handle(u64 size_, Id id_)
@ -17,9 +22,8 @@ NvMap::Handle::Handle(u64 size_, Id id_)
flags.raw = 0;
}
NvResult NvMap::Handle::Alloc(Flags pFlags, u32 pAlign, u8 pKind, u64 pAddress) {
NvResult NvMap::Handle::Alloc(Flags pFlags, u32 pAlign, u8 pKind, u64 pAddress, size_t pSessionId) {
std::scoped_lock lock(mutex);
// Handles cannot be allocated twice
if (allocated) {
return NvResult::AccessDenied;
@ -28,6 +32,7 @@ NvResult NvMap::Handle::Alloc(Flags pFlags, u32 pAlign, u8 pKind, u64 pAddress)
flags = pFlags;
kind = pKind;
align = pAlign < YUZU_PAGESIZE ? YUZU_PAGESIZE : pAlign;
session_id = pSessionId;
// This flag is only applicable for handles with an address passed
if (pAddress) {
@ -63,7 +68,7 @@ NvResult NvMap::Handle::Duplicate(bool internal_session) {
return NvResult::Success;
}
NvMap::NvMap(Tegra::Host1x::Host1x& host1x_) : host1x{host1x_} {}
NvMap::NvMap(Container& core_, Tegra::Host1x::Host1x& host1x_) : host1x{host1x_}, core{core_} {}
void NvMap::AddHandle(std::shared_ptr<Handle> handle_description) {
std::scoped_lock lock(handles_lock);
@ -78,12 +83,30 @@ void NvMap::UnmapHandle(Handle& handle_description) {
handle_description.unmap_queue_entry.reset();
}
// Free and unmap the handle from Host1x GMMU
if (handle_description.pin_virt_address) {
host1x.GMMU().Unmap(static_cast<GPUVAddr>(handle_description.pin_virt_address),
handle_description.aligned_size);
host1x.Allocator().Free(handle_description.pin_virt_address,
static_cast<u32>(handle_description.aligned_size));
handle_description.pin_virt_address = 0;
}
// Free and unmap the handle from the SMMU
host1x.MemoryManager().Unmap(static_cast<GPUVAddr>(handle_description.pin_virt_address),
handle_description.aligned_size);
host1x.Allocator().Free(handle_description.pin_virt_address,
static_cast<u32>(handle_description.aligned_size));
handle_description.pin_virt_address = 0;
const size_t map_size = handle_description.aligned_size;
if (!handle_description.in_heap) {
auto& smmu = host1x.MemoryManager();
size_t aligned_up = Common::AlignUp(map_size, BIG_PAGE_SIZE);
smmu.Unmap(handle_description.d_address, map_size);
smmu.Free(handle_description.d_address, static_cast<size_t>(aligned_up));
handle_description.d_address = 0;
return;
}
const VAddr vaddress = handle_description.address;
auto* session = core.GetSession(handle_description.session_id);
session->mapper->Unmap(vaddress, map_size);
handle_description.d_address = 0;
handle_description.in_heap = false;
}
bool NvMap::TryRemoveHandle(const Handle& handle_description) {
@ -124,22 +147,33 @@ std::shared_ptr<NvMap::Handle> NvMap::GetHandle(Handle::Id handle) {
}
}
VAddr NvMap::GetHandleAddress(Handle::Id handle) {
DAddr NvMap::GetHandleAddress(Handle::Id handle) {
std::scoped_lock lock(handles_lock);
try {
return handles.at(handle)->address;
return handles.at(handle)->d_address;
} catch (std::out_of_range&) {
return 0;
}
}
u32 NvMap::PinHandle(NvMap::Handle::Id handle) {
DAddr NvMap::PinHandle(NvMap::Handle::Id handle, bool low_area_pin) {
auto handle_description{GetHandle(handle)};
if (!handle_description) [[unlikely]] {
return 0;
}
std::scoped_lock lock(handle_description->mutex);
const auto map_low_area = [&] {
if (handle_description->pin_virt_address == 0) {
auto& gmmu_allocator = host1x.Allocator();
auto& gmmu = host1x.GMMU();
u32 address =
gmmu_allocator.Allocate(static_cast<u32>(handle_description->aligned_size));
gmmu.Map(static_cast<GPUVAddr>(address), handle_description->d_address,
handle_description->aligned_size);
handle_description->pin_virt_address = address;
}
};
if (!handle_description->pins) {
// If we're in the unmap queue we can just remove ourselves and return since we're already
// mapped
@ -151,37 +185,58 @@ u32 NvMap::PinHandle(NvMap::Handle::Id handle) {
unmap_queue.erase(*handle_description->unmap_queue_entry);
handle_description->unmap_queue_entry.reset();
if (low_area_pin) {
map_low_area();
handle_description->pins++;
return static_cast<DAddr>(handle_description->pin_virt_address);
}
handle_description->pins++;
return handle_description->pin_virt_address;
return handle_description->d_address;
}
}
using namespace std::placeholders;
// If not then allocate some space and map it
u32 address{};
auto& smmu_allocator = host1x.Allocator();
auto& smmu_memory_manager = host1x.MemoryManager();
while ((address = smmu_allocator.Allocate(
static_cast<u32>(handle_description->aligned_size))) == 0) {
// Free handles until the allocation succeeds
std::scoped_lock queueLock(unmap_queue_lock);
if (auto freeHandleDesc{unmap_queue.front()}) {
// Handles in the unmap queue are guaranteed not to be pinned so don't bother
// checking if they are before unmapping
std::scoped_lock freeLock(freeHandleDesc->mutex);
if (handle_description->pin_virt_address)
UnmapHandle(*freeHandleDesc);
} else {
LOG_CRITICAL(Service_NVDRV, "Ran out of SMMU address space!");
DAddr address{};
auto& smmu = host1x.MemoryManager();
auto* session = core.GetSession(handle_description->session_id);
const VAddr vaddress = handle_description->address;
const size_t map_size = handle_description->aligned_size;
if (session->has_preallocated_area && session->mapper->IsInBounds(vaddress, map_size)) {
handle_description->d_address = session->mapper->Map(vaddress, map_size);
handle_description->in_heap = true;
} else {
size_t aligned_up = Common::AlignUp(map_size, BIG_PAGE_SIZE);
while ((address = smmu.Allocate(aligned_up)) == 0) {
// Free handles until the allocation succeeds
std::scoped_lock queueLock(unmap_queue_lock);
if (auto freeHandleDesc{unmap_queue.front()}) {
// Handles in the unmap queue are guaranteed not to be pinned so don't bother
// checking if they are before unmapping
std::scoped_lock freeLock(freeHandleDesc->mutex);
if (handle_description->d_address)
UnmapHandle(*freeHandleDesc);
} else {
LOG_CRITICAL(Service_NVDRV, "Ran out of SMMU address space!");
}
}
}
smmu_memory_manager.Map(static_cast<GPUVAddr>(address), handle_description->address,
handle_description->aligned_size);
handle_description->pin_virt_address = address;
handle_description->d_address = address;
smmu.Map(address, vaddress, map_size, session->smmu_id, true);
handle_description->in_heap = false;
}
}
if (low_area_pin) {
map_low_area();
}
handle_description->pins++;
return handle_description->pin_virt_address;
if (low_area_pin) {
return static_cast<DAddr>(handle_description->pin_virt_address);
}
return handle_description->d_address;
}
void NvMap::UnpinHandle(Handle::Id handle) {
@ -232,7 +287,7 @@ std::optional<NvMap::FreeInfo> NvMap::FreeHandle(Handle::Id handle, bool interna
LOG_WARNING(Service_NVDRV, "User duplicate count imbalance detected!");
} else if (handle_description->dupes == 0) {
// Force unmap the handle
if (handle_description->pin_virt_address) {
if (handle_description->d_address) {
std::scoped_lock queueLock(unmap_queue_lock);
UnmapHandle(*handle_description);
}

View file

@ -25,6 +25,8 @@ class Host1x;
} // namespace Tegra
namespace Service::Nvidia::NvCore {
class Container;
/**
* @brief The nvmap core class holds the global state for nvmap and provides methods to manage
* handles
@ -48,7 +50,7 @@ public:
using Id = u32;
Id id; //!< A globally unique identifier for this handle
s32 pins{};
s64 pins{};
u32 pin_virt_address{};
std::optional<typename std::list<std::shared_ptr<Handle>>::iterator> unmap_queue_entry{};
@ -61,15 +63,18 @@ public:
} flags{};
static_assert(sizeof(Flags) == sizeof(u32));
u64 address{}; //!< The memory location in the guest's AS that this handle corresponds to,
//!< this can also be in the nvdrv tmem
VAddr address{}; //!< The memory location in the guest's AS that this handle corresponds to,
//!< this can also be in the nvdrv tmem
bool is_shared_mem_mapped{}; //!< If this nvmap has been mapped with the MapSharedMem IPC
//!< call
u8 kind{}; //!< Used for memory compression
bool allocated{}; //!< If the handle has been allocated with `Alloc`
bool in_heap{};
size_t session_id{};
u64 dma_map_addr{}; //! remove me after implementing pinning.
DAddr d_address{}; //!< The memory location in the device's AS that this handle corresponds
//!< to, this can also be in the nvdrv tmem
Handle(u64 size, Id id);
@ -77,7 +82,8 @@ public:
* @brief Sets up the handle with the given memory config, can allocate memory from the tmem
* if a 0 address is passed
*/
[[nodiscard]] NvResult Alloc(Flags pFlags, u32 pAlign, u8 pKind, u64 pAddress);
[[nodiscard]] NvResult Alloc(Flags pFlags, u32 pAlign, u8 pKind, u64 pAddress,
size_t pSessionId);
/**
* @brief Increases the dupe counter of the handle for the given session
@ -108,7 +114,7 @@ public:
bool can_unlock; //!< If the address region is ready to be unlocked
};
explicit NvMap(Tegra::Host1x::Host1x& host1x);
explicit NvMap(Container& core, Tegra::Host1x::Host1x& host1x);
/**
* @brief Creates an unallocated handle of the given size
@ -117,7 +123,7 @@ public:
std::shared_ptr<Handle> GetHandle(Handle::Id handle);
VAddr GetHandleAddress(Handle::Id handle);
DAddr GetHandleAddress(Handle::Id handle);
/**
* @brief Maps a handle into the SMMU address space
@ -125,7 +131,7 @@ public:
* number of calls to `UnpinHandle`
* @return The SMMU virtual address that the handle has been mapped to
*/
u32 PinHandle(Handle::Id handle);
DAddr PinHandle(Handle::Id handle, bool low_area_pin);
/**
* @brief When this has been called an equal number of times to `PinHandle` for the supplied
@ -172,5 +178,7 @@ private:
* @return If the handle was removed from the map
*/
bool TryRemoveHandle(const Handle& handle_description);
Container& core;
};
} // namespace Service::Nvidia::NvCore

View file

@ -62,7 +62,7 @@ public:
* Called once a device is opened
* @param fd The device fd
*/
virtual void OnOpen(DeviceFD fd) = 0;
virtual void OnOpen(size_t session_id, DeviceFD fd) = 0;
/**
* Called once a device is closed

View file

@ -35,14 +35,14 @@ NvResult nvdisp_disp0::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> in
return NvResult::NotImplemented;
}
void nvdisp_disp0::OnOpen(DeviceFD fd) {}
void nvdisp_disp0::OnOpen(size_t session_id, DeviceFD fd) {}
void nvdisp_disp0::OnClose(DeviceFD fd) {}
void nvdisp_disp0::flip(u32 buffer_handle, u32 offset, android::PixelFormat format, u32 width,
u32 height, u32 stride, android::BufferTransformFlags transform,
const Common::Rectangle<int>& crop_rect,
std::array<Service::Nvidia::NvFence, 4>& fences, u32 num_fences) {
const VAddr addr = nvmap.GetHandleAddress(buffer_handle);
const DAddr addr = nvmap.GetHandleAddress(buffer_handle);
LOG_TRACE(Service,
"Drawing from address {:X} offset {:08X} Width {} Height {} Stride {} Format {}",
addr, offset, width, height, stride, format);

View file

@ -32,7 +32,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
/// Performs a screen flip, drawing the buffer pointed to by the handle.

View file

@ -86,7 +86,7 @@ NvResult nvhost_as_gpu::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> i
return NvResult::NotImplemented;
}
void nvhost_as_gpu::OnOpen(DeviceFD fd) {}
void nvhost_as_gpu::OnOpen(size_t session_id, DeviceFD fd) {}
void nvhost_as_gpu::OnClose(DeviceFD fd) {}
NvResult nvhost_as_gpu::AllocAsEx(IoctlAllocAsEx& params) {
@ -206,6 +206,8 @@ void nvhost_as_gpu::FreeMappingLocked(u64 offset) {
static_cast<u32>(aligned_size >> page_size_bits));
}
nvmap.UnpinHandle(mapping->handle);
// Sparse mappings shouldn't be fully unmapped, just returned to their sparse state
// Only FreeSpace can unmap them fully
if (mapping->sparse_alloc) {
@ -293,12 +295,12 @@ NvResult nvhost_as_gpu::Remap(std::span<IoctlRemapEntry> entries) {
return NvResult::BadValue;
}
VAddr cpu_address{static_cast<VAddr>(
handle->address +
(static_cast<u64>(entry.handle_offset_big_pages) << vm.big_page_size_bits))};
DAddr base = nvmap.PinHandle(entry.handle, false);
DAddr device_address{static_cast<DAddr>(
base + (static_cast<u64>(entry.handle_offset_big_pages) << vm.big_page_size_bits))};
gmmu->Map(virtual_address, cpu_address, size, static_cast<Tegra::PTEKind>(entry.kind),
use_big_pages);
gmmu->Map(virtual_address, device_address, size,
static_cast<Tegra::PTEKind>(entry.kind), use_big_pages);
}
}
@ -331,9 +333,9 @@ NvResult nvhost_as_gpu::MapBufferEx(IoctlMapBufferEx& params) {
}
u64 gpu_address{static_cast<u64>(params.offset + params.buffer_offset)};
VAddr cpu_address{mapping->ptr + params.buffer_offset};
VAddr device_address{mapping->ptr + params.buffer_offset};
gmmu->Map(gpu_address, cpu_address, params.mapping_size,
gmmu->Map(gpu_address, device_address, params.mapping_size,
static_cast<Tegra::PTEKind>(params.kind), mapping->big_page);
return NvResult::Success;
@ -349,7 +351,8 @@ NvResult nvhost_as_gpu::MapBufferEx(IoctlMapBufferEx& params) {
return NvResult::BadValue;
}
VAddr cpu_address{static_cast<VAddr>(handle->address + params.buffer_offset)};
DAddr device_address{
static_cast<DAddr>(nvmap.PinHandle(params.handle, false) + params.buffer_offset)};
u64 size{params.mapping_size ? params.mapping_size : handle->orig_size};
bool big_page{[&]() {
@ -373,15 +376,14 @@ NvResult nvhost_as_gpu::MapBufferEx(IoctlMapBufferEx& params) {
}
const bool use_big_pages = alloc->second.big_pages && big_page;
gmmu->Map(params.offset, cpu_address, size, static_cast<Tegra::PTEKind>(params.kind),
gmmu->Map(params.offset, device_address, size, static_cast<Tegra::PTEKind>(params.kind),
use_big_pages);
auto mapping{std::make_shared<Mapping>(cpu_address, params.offset, size, true,
use_big_pages, alloc->second.sparse)};
auto mapping{std::make_shared<Mapping>(params.handle, device_address, params.offset, size,
true, use_big_pages, alloc->second.sparse)};
alloc->second.mappings.push_back(mapping);
mapping_map[params.offset] = mapping;
} else {
auto& allocator{big_page ? *vm.big_page_allocator : *vm.small_page_allocator};
u32 page_size{big_page ? vm.big_page_size : VM::YUZU_PAGESIZE};
u32 page_size_bits{big_page ? vm.big_page_size_bits : VM::PAGE_SIZE_BITS};
@ -394,11 +396,11 @@ NvResult nvhost_as_gpu::MapBufferEx(IoctlMapBufferEx& params) {
return NvResult::InsufficientMemory;
}
gmmu->Map(params.offset, cpu_address, Common::AlignUp(size, page_size),
gmmu->Map(params.offset, device_address, Common::AlignUp(size, page_size),
static_cast<Tegra::PTEKind>(params.kind), big_page);
auto mapping{
std::make_shared<Mapping>(cpu_address, params.offset, size, false, big_page, false)};
auto mapping{std::make_shared<Mapping>(params.handle, device_address, params.offset, size,
false, big_page, false)};
mapping_map[params.offset] = mapping;
}
@ -433,6 +435,8 @@ NvResult nvhost_as_gpu::UnmapBuffer(IoctlUnmapBuffer& params) {
gmmu->Unmap(params.offset, mapping->size);
}
nvmap.UnpinHandle(mapping->handle);
mapping_map.erase(params.offset);
} catch (const std::out_of_range&) {
LOG_WARNING(Service_NVDRV, "Couldn't find region to unmap at 0x{:X}", params.offset);

View file

@ -55,7 +55,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
Kernel::KEvent* QueryEvent(u32 event_id) override;
@ -159,16 +159,18 @@ private:
NvCore::NvMap& nvmap;
struct Mapping {
VAddr ptr;
NvCore::NvMap::Handle::Id handle;
DAddr ptr;
u64 offset;
u64 size;
bool fixed;
bool big_page; // Only valid if fixed == false
bool sparse_alloc;
Mapping(VAddr ptr_, u64 offset_, u64 size_, bool fixed_, bool big_page_, bool sparse_alloc_)
: ptr(ptr_), offset(offset_), size(size_), fixed(fixed_), big_page(big_page_),
sparse_alloc(sparse_alloc_) {}
Mapping(NvCore::NvMap::Handle::Id handle_, DAddr ptr_, u64 offset_, u64 size_, bool fixed_,
bool big_page_, bool sparse_alloc_)
: handle(handle_), ptr(ptr_), offset(offset_), size(size_), fixed(fixed_),
big_page(big_page_), sparse_alloc(sparse_alloc_) {}
};
struct Allocation {
@ -212,9 +214,6 @@ private:
bool initialised{};
} vm;
std::shared_ptr<Tegra::MemoryManager> gmmu;
// s32 channel{};
// u32 big_page_size{VM::DEFAULT_BIG_PAGE_SIZE};
};
} // namespace Service::Nvidia::Devices

View file

@ -76,7 +76,7 @@ NvResult nvhost_ctrl::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> inp
return NvResult::NotImplemented;
}
void nvhost_ctrl::OnOpen(DeviceFD fd) {}
void nvhost_ctrl::OnOpen(size_t session_id, DeviceFD fd) {}
void nvhost_ctrl::OnClose(DeviceFD fd) {}

View file

@ -32,7 +32,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
Kernel::KEvent* QueryEvent(u32 event_id) override;

View file

@ -82,7 +82,7 @@ NvResult nvhost_ctrl_gpu::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8>
return NvResult::NotImplemented;
}
void nvhost_ctrl_gpu::OnOpen(DeviceFD fd) {}
void nvhost_ctrl_gpu::OnOpen(size_t session_id, DeviceFD fd) {}
void nvhost_ctrl_gpu::OnClose(DeviceFD fd) {}
NvResult nvhost_ctrl_gpu::GetCharacteristics1(IoctlCharacteristics& params) {

View file

@ -28,7 +28,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
Kernel::KEvent* QueryEvent(u32 event_id) override;

View file

@ -120,7 +120,7 @@ NvResult nvhost_gpu::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> inpu
return NvResult::NotImplemented;
}
void nvhost_gpu::OnOpen(DeviceFD fd) {}
void nvhost_gpu::OnOpen(size_t session_id, DeviceFD fd) {}
void nvhost_gpu::OnClose(DeviceFD fd) {}
NvResult nvhost_gpu::SetNVMAPfd(IoctlSetNvmapFD& params) {

View file

@ -47,7 +47,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
Kernel::KEvent* QueryEvent(u32 event_id) override;

View file

@ -35,7 +35,7 @@ NvResult nvhost_nvdec::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> in
case 0x7:
return WrapFixed(this, &nvhost_nvdec::SetSubmitTimeout, input, output);
case 0x9:
return WrapFixedVariable(this, &nvhost_nvdec::MapBuffer, input, output);
return WrapFixedVariable(this, &nvhost_nvdec::MapBuffer, input, output, fd);
case 0xa:
return WrapFixedVariable(this, &nvhost_nvdec::UnmapBuffer, input, output);
default:
@ -68,9 +68,10 @@ NvResult nvhost_nvdec::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> in
return NvResult::NotImplemented;
}
void nvhost_nvdec::OnOpen(DeviceFD fd) {
void nvhost_nvdec::OnOpen(size_t session_id, DeviceFD fd) {
LOG_INFO(Service_NVDRV, "NVDEC video stream started");
system.SetNVDECActive(true);
sessions[fd] = session_id;
}
void nvhost_nvdec::OnClose(DeviceFD fd) {
@ -81,6 +82,10 @@ void nvhost_nvdec::OnClose(DeviceFD fd) {
system.GPU().ClearCdmaInstance(iter->second);
}
system.SetNVDECActive(false);
auto it = sessions.find(fd);
if (it != sessions.end()) {
sessions.erase(it);
}
}
} // namespace Service::Nvidia::Devices

View file

@ -20,7 +20,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
};

View file

@ -8,6 +8,7 @@
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/service/nvdrv/core/container.h"
#include "core/hle/service/nvdrv/core/nvmap.h"
#include "core/hle/service/nvdrv/core/syncpoint_manager.h"
@ -95,6 +96,8 @@ NvResult nvhost_nvdec_common::Submit(IoctlSubmit& params, std::span<u8> data, De
offset += SliceVectors(data, fence_thresholds, params.fence_count, offset);
auto& gpu = system.GPU();
auto* session = core.GetSession(sessions[fd]);
if (gpu.UseNvdec()) {
for (std::size_t i = 0; i < syncpt_increments.size(); i++) {
const SyncptIncr& syncpt_incr = syncpt_increments[i];
@ -106,8 +109,8 @@ NvResult nvhost_nvdec_common::Submit(IoctlSubmit& params, std::span<u8> data, De
const auto object = nvmap.GetHandle(cmd_buffer.memory_id);
ASSERT_OR_EXECUTE(object, return NvResult::InvalidState;);
Tegra::ChCommandHeaderList cmdlist(cmd_buffer.word_count);
system.ApplicationMemory().ReadBlock(object->address + cmd_buffer.offset, cmdlist.data(),
cmdlist.size() * sizeof(u32));
session->process->GetMemory().ReadBlock(object->address + cmd_buffer.offset, cmdlist.data(),
cmdlist.size() * sizeof(u32));
gpu.PushCommandBuffer(core.Host1xDeviceFile().fd_to_id[fd], cmdlist);
}
// Some games expect command_buffers to be written back
@ -133,10 +136,12 @@ NvResult nvhost_nvdec_common::GetWaitbase(IoctlGetWaitbase& params) {
return NvResult::Success;
}
NvResult nvhost_nvdec_common::MapBuffer(IoctlMapBuffer& params, std::span<MapBufferEntry> entries) {
NvResult nvhost_nvdec_common::MapBuffer(IoctlMapBuffer& params, std::span<MapBufferEntry> entries,
DeviceFD fd) {
const size_t num_entries = std::min(params.num_entries, static_cast<u32>(entries.size()));
for (size_t i = 0; i < num_entries; i++) {
entries[i].map_address = nvmap.PinHandle(entries[i].map_handle);
DAddr pin_address = nvmap.PinHandle(entries[i].map_handle, true);
entries[i].map_address = static_cast<u32>(pin_address);
}
return NvResult::Success;

View file

@ -4,7 +4,9 @@
#pragma once
#include <deque>
#include <unordered_map>
#include <vector>
#include "common/common_types.h"
#include "common/swap.h"
#include "core/hle/service/nvdrv/core/syncpoint_manager.h"
@ -111,7 +113,7 @@ protected:
NvResult Submit(IoctlSubmit& params, std::span<u8> input, DeviceFD fd);
NvResult GetSyncpoint(IoctlGetSyncpoint& params);
NvResult GetWaitbase(IoctlGetWaitbase& params);
NvResult MapBuffer(IoctlMapBuffer& params, std::span<MapBufferEntry> entries);
NvResult MapBuffer(IoctlMapBuffer& params, std::span<MapBufferEntry> entries, DeviceFD fd);
NvResult UnmapBuffer(IoctlMapBuffer& params, std::span<MapBufferEntry> entries);
NvResult SetSubmitTimeout(u32 timeout);
@ -125,6 +127,7 @@ protected:
NvCore::NvMap& nvmap;
NvCore::ChannelType channel_type;
std::array<u32, MaxSyncPoints> device_syncpoints{};
std::unordered_map<DeviceFD, size_t> sessions;
};
}; // namespace Devices
} // namespace Service::Nvidia

View file

@ -44,7 +44,7 @@ NvResult nvhost_nvjpg::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> in
return NvResult::NotImplemented;
}
void nvhost_nvjpg::OnOpen(DeviceFD fd) {}
void nvhost_nvjpg::OnOpen(size_t session_id, DeviceFD fd) {}
void nvhost_nvjpg::OnClose(DeviceFD fd) {}
NvResult nvhost_nvjpg::SetNVMAPfd(IoctlSetNvmapFD& params) {

View file

@ -22,7 +22,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
private:

View file

@ -33,7 +33,7 @@ NvResult nvhost_vic::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> inpu
case 0x3:
return WrapFixed(this, &nvhost_vic::GetWaitbase, input, output);
case 0x9:
return WrapFixedVariable(this, &nvhost_vic::MapBuffer, input, output);
return WrapFixedVariable(this, &nvhost_vic::MapBuffer, input, output, fd);
case 0xa:
return WrapFixedVariable(this, &nvhost_vic::UnmapBuffer, input, output);
default:
@ -68,7 +68,9 @@ NvResult nvhost_vic::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> inpu
return NvResult::NotImplemented;
}
void nvhost_vic::OnOpen(DeviceFD fd) {}
void nvhost_vic::OnOpen(size_t session_id, DeviceFD fd) {
sessions[fd] = session_id;
}
void nvhost_vic::OnClose(DeviceFD fd) {
auto& host1x_file = core.Host1xDeviceFile();
@ -76,6 +78,10 @@ void nvhost_vic::OnClose(DeviceFD fd) {
if (iter != host1x_file.fd_to_id.end()) {
system.GPU().ClearCdmaInstance(iter->second);
}
auto it = sessions.find(fd);
if (it != sessions.end()) {
sessions.erase(it);
}
}
} // namespace Service::Nvidia::Devices

View file

@ -19,7 +19,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
};
} // namespace Service::Nvidia::Devices

View file

@ -36,9 +36,9 @@ NvResult nvmap::Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> input,
case 0x3:
return WrapFixed(this, &nvmap::IocFromId, input, output);
case 0x4:
return WrapFixed(this, &nvmap::IocAlloc, input, output);
return WrapFixed(this, &nvmap::IocAlloc, input, output, fd);
case 0x5:
return WrapFixed(this, &nvmap::IocFree, input, output);
return WrapFixed(this, &nvmap::IocFree, input, output, fd);
case 0x9:
return WrapFixed(this, &nvmap::IocParam, input, output);
case 0xe:
@ -67,8 +67,15 @@ NvResult nvmap::Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, st
return NvResult::NotImplemented;
}
void nvmap::OnOpen(DeviceFD fd) {}
void nvmap::OnClose(DeviceFD fd) {}
void nvmap::OnOpen(size_t session_id, DeviceFD fd) {
sessions[fd] = session_id;
}
void nvmap::OnClose(DeviceFD fd) {
auto it = sessions.find(fd);
if (it != sessions.end()) {
sessions.erase(it);
}
}
NvResult nvmap::IocCreate(IocCreateParams& params) {
LOG_DEBUG(Service_NVDRV, "called, size=0x{:08X}", params.size);
@ -87,7 +94,7 @@ NvResult nvmap::IocCreate(IocCreateParams& params) {
return NvResult::Success;
}
NvResult nvmap::IocAlloc(IocAllocParams& params) {
NvResult nvmap::IocAlloc(IocAllocParams& params, DeviceFD fd) {
LOG_DEBUG(Service_NVDRV, "called, addr={:X}", params.address);
if (!params.handle) {
@ -116,15 +123,15 @@ NvResult nvmap::IocAlloc(IocAllocParams& params) {
return NvResult::InsufficientMemory;
}
const auto result =
handle_description->Alloc(params.flags, params.align, params.kind, params.address);
const auto result = handle_description->Alloc(params.flags, params.align, params.kind,
params.address, sessions[fd]);
if (result != NvResult::Success) {
LOG_CRITICAL(Service_NVDRV, "Object failed to allocate, handle={:08X}", params.handle);
return result;
}
bool is_out_io{};
ASSERT(system.ApplicationProcess()
->GetPageTable()
auto process = container.GetSession(sessions[fd])->process;
ASSERT(process->GetPageTable()
.LockForMapDeviceAddressSpace(&is_out_io, handle_description->address,
handle_description->size,
Kernel::KMemoryPermission::None, true, false)
@ -224,7 +231,7 @@ NvResult nvmap::IocParam(IocParamParams& params) {
return NvResult::Success;
}
NvResult nvmap::IocFree(IocFreeParams& params) {
NvResult nvmap::IocFree(IocFreeParams& params, DeviceFD fd) {
LOG_DEBUG(Service_NVDRV, "called");
if (!params.handle) {
@ -233,9 +240,9 @@ NvResult nvmap::IocFree(IocFreeParams& params) {
}
if (auto freeInfo{file.FreeHandle(params.handle, false)}) {
auto process = container.GetSession(sessions[fd])->process;
if (freeInfo->can_unlock) {
ASSERT(system.ApplicationProcess()
->GetPageTable()
ASSERT(process->GetPageTable()
.UnlockForDeviceAddressSpace(freeInfo->address, freeInfo->size)
.IsSuccess());
}

View file

@ -33,7 +33,7 @@ public:
NvResult Ioctl3(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output,
std::span<u8> inline_output) override;
void OnOpen(DeviceFD fd) override;
void OnOpen(size_t session_id, DeviceFD fd) override;
void OnClose(DeviceFD fd) override;
enum class HandleParameterType : u32_le {
@ -100,11 +100,11 @@ public:
static_assert(sizeof(IocGetIdParams) == 8, "IocGetIdParams has wrong size");
NvResult IocCreate(IocCreateParams& params);
NvResult IocAlloc(IocAllocParams& params);
NvResult IocAlloc(IocAllocParams& params, DeviceFD fd);
NvResult IocGetId(IocGetIdParams& params);
NvResult IocFromId(IocFromIdParams& params);
NvResult IocParam(IocParamParams& params);
NvResult IocFree(IocFreeParams& params);
NvResult IocFree(IocFreeParams& params, DeviceFD fd);
private:
/// Id to use for the next handle that is created.
@ -115,6 +115,7 @@ private:
NvCore::Container& container;
NvCore::NvMap& file;
std::unordered_map<DeviceFD, size_t> sessions;
};
} // namespace Service::Nvidia::Devices

View file

@ -45,13 +45,22 @@ void EventInterface::FreeEvent(Kernel::KEvent* event) {
void LoopProcess(Nvnflinger::Nvnflinger& nvnflinger, Core::System& system) {
auto server_manager = std::make_unique<ServerManager>(system);
auto module = std::make_shared<Module>(system);
server_manager->RegisterNamedService("nvdrv", std::make_shared<NVDRV>(system, module, "nvdrv"));
server_manager->RegisterNamedService("nvdrv:a",
std::make_shared<NVDRV>(system, module, "nvdrv:a"));
server_manager->RegisterNamedService("nvdrv:s",
std::make_shared<NVDRV>(system, module, "nvdrv:s"));
server_manager->RegisterNamedService("nvdrv:t",
std::make_shared<NVDRV>(system, module, "nvdrv:t"));
const auto NvdrvInterfaceFactoryForApplication = [&, module] {
return std::make_shared<NVDRV>(system, module, "nvdrv");
};
const auto NvdrvInterfaceFactoryForApplets = [&, module] {
return std::make_shared<NVDRV>(system, module, "nvdrv:a");
};
const auto NvdrvInterfaceFactoryForSysmodules = [&, module] {
return std::make_shared<NVDRV>(system, module, "nvdrv:a");
};
const auto NvdrvInterfaceFactory = [&, module] {
return std::make_shared<NVDRV>(system, module, "nvdrv:t");
};
server_manager->RegisterNamedService("nvdrv", NvdrvInterfaceFactoryForApplication);
server_manager->RegisterNamedService("nvdrv:a", NvdrvInterfaceFactoryForApplets);
server_manager->RegisterNamedService("nvdrv:s", NvdrvInterfaceFactoryForSysmodules);
server_manager->RegisterNamedService("nvdrv:t", NvdrvInterfaceFactory);
server_manager->RegisterNamedService("nvmemp", std::make_shared<NVMEMP>(system));
nvnflinger.SetNVDrvInstance(module);
ServerManager::RunServer(std::move(server_manager));
@ -113,7 +122,7 @@ NvResult Module::VerifyFD(DeviceFD fd) const {
return NvResult::Success;
}
DeviceFD Module::Open(const std::string& device_name) {
DeviceFD Module::Open(const std::string& device_name, size_t session_id) {
auto it = builders.find(device_name);
if (it == builders.end()) {
LOG_ERROR(Service_NVDRV, "Trying to open unknown device {}", device_name);
@ -124,7 +133,7 @@ DeviceFD Module::Open(const std::string& device_name) {
auto& builder = it->second;
auto device = builder(fd)->second;
device->OnOpen(fd);
device->OnOpen(session_id, fd);
return fd;
}

View file

@ -77,7 +77,7 @@ public:
NvResult VerifyFD(DeviceFD fd) const;
/// Opens a device node and returns a file descriptor to it.
DeviceFD Open(const std::string& device_name);
DeviceFD Open(const std::string& device_name, size_t session_id);
/// Sends an ioctl command to the specified file descriptor.
NvResult Ioctl1(DeviceFD fd, Ioctl command, std::span<const u8> input, std::span<u8> output);
@ -93,6 +93,10 @@ public:
NvResult QueryEvent(DeviceFD fd, u32 event_id, Kernel::KEvent*& event);
NvCore::Container& GetContainer() {
return container;
}
private:
friend class EventInterface;
friend class Service::Nvnflinger::Nvnflinger;

View file

@ -3,8 +3,10 @@
// SPDX-License-Identifier: GPL-3.0-or-later
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_readable_event.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/nvdrv/nvdata.h"
@ -37,7 +39,7 @@ void NVDRV::Open(HLERequestContext& ctx) {
return;
}
DeviceFD fd = nvdrv->Open(device_name);
DeviceFD fd = nvdrv->Open(device_name, session_id);
rb.Push<DeviceFD>(fd);
rb.PushEnum(fd != INVALID_NVDRV_FD ? NvResult::Success : NvResult::FileOperationFailed);
@ -150,12 +152,29 @@ void NVDRV::Close(HLERequestContext& ctx) {
void NVDRV::Initialize(HLERequestContext& ctx) {
LOG_WARNING(Service_NVDRV, "(STUBBED) called");
IPC::ResponseBuilder rb{ctx, 3};
SCOPE_EXIT({
rb.Push(ResultSuccess);
rb.PushEnum(NvResult::Success);
});
if (is_initialized) {
// No need to initialize again
return;
}
IPC::RequestParser rp{ctx};
const auto process_handle{ctx.GetCopyHandle(0)};
// The transfer memory is lent to nvdrv as a work buffer since nvdrv is
// unable to allocate as much memory on its own. For HLE it's unnecessary to handle it
[[maybe_unused]] const auto transfer_memory_handle{ctx.GetCopyHandle(1)};
[[maybe_unused]] const auto transfer_memory_size = rp.Pop<u32>();
auto& container = nvdrv->GetContainer();
auto process = ctx.GetObjectFromHandle<Kernel::KProcess>(process_handle);
session_id = container.OpenSession(process.GetPointerUnsafe());
is_initialized = true;
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(ResultSuccess);
rb.PushEnum(NvResult::Success);
}
void NVDRV::QueryEvent(HLERequestContext& ctx) {
@ -242,6 +261,9 @@ NVDRV::NVDRV(Core::System& system_, std::shared_ptr<Module> nvdrv_, const char*
RegisterHandlers(functions);
}
NVDRV::~NVDRV() = default;
NVDRV::~NVDRV() {
auto& container = nvdrv->GetContainer();
container.CloseSession(session_id);
}
} // namespace Service::Nvidia

View file

@ -35,6 +35,7 @@ private:
u64 pid{};
bool is_initialized{};
size_t session_id{};
Common::ScratchBuffer<u8> output_buffer;
Common::ScratchBuffer<u8> inline_output_buffer;
};

View file

@ -87,19 +87,20 @@ Result CreateNvMapHandle(u32* out_nv_map_handle, Nvidia::Devices::nvmap& nvmap,
R_SUCCEED();
}
Result FreeNvMapHandle(Nvidia::Devices::nvmap& nvmap, u32 handle) {
Result FreeNvMapHandle(Nvidia::Devices::nvmap& nvmap, u32 handle, Nvidia::DeviceFD nvmap_fd) {
// Free the handle.
Nvidia::Devices::nvmap::IocFreeParams free_params{
.handle = handle,
};
R_UNLESS(nvmap.IocFree(free_params) == Nvidia::NvResult::Success, VI::ResultOperationFailed);
R_UNLESS(nvmap.IocFree(free_params, nvmap_fd) == Nvidia::NvResult::Success,
VI::ResultOperationFailed);
// We succeeded.
R_SUCCEED();
}
Result AllocNvMapHandle(Nvidia::Devices::nvmap& nvmap, u32 handle, Common::ProcessAddress buffer,
u32 size) {
u32 size, Nvidia::DeviceFD nvmap_fd) {
// Assign the allocated memory to the handle.
Nvidia::Devices::nvmap::IocAllocParams alloc_params{
.handle = handle,
@ -109,16 +110,16 @@ Result AllocNvMapHandle(Nvidia::Devices::nvmap& nvmap, u32 handle, Common::Proce
.kind = 0,
.address = GetInteger(buffer),
};
R_UNLESS(nvmap.IocAlloc(alloc_params) == Nvidia::NvResult::Success, VI::ResultOperationFailed);
R_UNLESS(nvmap.IocAlloc(alloc_params, nvmap_fd) == Nvidia::NvResult::Success,
VI::ResultOperationFailed);
// We succeeded.
R_SUCCEED();
}
Result AllocateHandleForBuffer(u32* out_handle, Nvidia::Module& nvdrv,
Result AllocateHandleForBuffer(u32* out_handle, Nvidia::Module& nvdrv, Nvidia::DeviceFD nvmap_fd,
Common::ProcessAddress buffer, u32 size) {
// Get the nvmap device.
auto nvmap_fd = nvdrv.Open("/dev/nvmap");
auto nvmap = nvdrv.GetDevice<Nvidia::Devices::nvmap>(nvmap_fd);
ASSERT(nvmap != nullptr);
@ -127,11 +128,11 @@ Result AllocateHandleForBuffer(u32* out_handle, Nvidia::Module& nvdrv,
// Ensure we maintain a clean state on failure.
ON_RESULT_FAILURE {
ASSERT(R_SUCCEEDED(FreeNvMapHandle(*nvmap, *out_handle)));
ASSERT(R_SUCCEEDED(FreeNvMapHandle(*nvmap, *out_handle, nvmap_fd)));
};
// Assign the allocated memory to the handle.
R_RETURN(AllocNvMapHandle(*nvmap, *out_handle, buffer, size));
R_RETURN(AllocNvMapHandle(*nvmap, *out_handle, buffer, size, nvmap_fd));
}
constexpr auto SharedBufferBlockLinearFormat = android::PixelFormat::Rgba8888;
@ -197,9 +198,13 @@ Result FbShareBufferManager::Initialize(u64* out_buffer_id, u64* out_layer_id, u
std::addressof(m_buffer_page_group), m_system,
SharedBufferSize));
auto& container = m_nvdrv->GetContainer();
m_session_id = container.OpenSession(m_system.ApplicationProcess());
m_nvmap_fd = m_nvdrv->Open("/dev/nvmap", m_session_id);
// Create an nvmap handle for the buffer and assign the memory to it.
R_TRY(AllocateHandleForBuffer(std::addressof(m_buffer_nvmap_handle), *m_nvdrv, map_address,
SharedBufferSize));
R_TRY(AllocateHandleForBuffer(std::addressof(m_buffer_nvmap_handle), *m_nvdrv, m_nvmap_fd,
map_address, SharedBufferSize));
// Record the display id.
m_display_id = display_id;

View file

@ -4,6 +4,7 @@
#pragma once
#include "common/math_util.h"
#include "core/hle/service/nvdrv/nvdata.h"
#include "core/hle/service/nvnflinger/nvnflinger.h"
#include "core/hle/service/nvnflinger/ui/fence.h"
@ -53,7 +54,8 @@ private:
u64 m_layer_id = 0;
u32 m_buffer_nvmap_handle = 0;
SharedMemoryPoolLayout m_pool_layout = {};
Nvidia::DeviceFD m_nvmap_fd = {};
size_t m_session_id = {};
std::unique_ptr<Kernel::KPageGroup> m_buffer_page_group;
std::mutex m_guard;

View file

@ -126,7 +126,7 @@ void Nvnflinger::ShutdownLayers() {
void Nvnflinger::SetNVDrvInstance(std::shared_ptr<Nvidia::Module> instance) {
nvdrv = std::move(instance);
disp_fd = nvdrv->Open("/dev/nvdisp_disp0");
disp_fd = nvdrv->Open("/dev/nvdisp_disp0", 0);
}
std::optional<u64> Nvnflinger::OpenDisplay(std::string_view name) {

View file

@ -22,11 +22,13 @@ GraphicBuffer::GraphicBuffer(Service::Nvidia::NvCore::NvMap& nvmap,
: NvGraphicBuffer(GetBuffer(buffer)), m_nvmap(std::addressof(nvmap)) {
if (this->BufferId() > 0) {
m_nvmap->DuplicateHandle(this->BufferId(), true);
m_nvmap->PinHandle(this->BufferId(), false);
}
}
GraphicBuffer::~GraphicBuffer() {
if (m_nvmap != nullptr && this->BufferId() > 0) {
m_nvmap->UnpinHandle(this->BufferId());
m_nvmap->FreeHandle(this->BufferId(), true);
}
}

View file

@ -24,6 +24,8 @@
#include "core/hle/kernel/k_process.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/host1x/host1x.h"
#include "video_core/rasterizer_download_area.h"
namespace Core::Memory {
@ -637,17 +639,6 @@ struct Memory::Impl {
LOG_DEBUG(HW_Memory, "Mapping {:016X} onto {:016X}-{:016X}", GetInteger(target),
base * YUZU_PAGESIZE, (base + size) * YUZU_PAGESIZE);
// During boot, current_page_table might not be set yet, in which case we need not flush
if (system.IsPoweredOn()) {
auto& gpu = system.GPU();
for (u64 i = 0; i < size; i++) {
const auto page = base + i;
if (page_table.pointers[page].Type() == Common::PageType::RasterizerCachedMemory) {
gpu.FlushAndInvalidateRegion(page << YUZU_PAGEBITS, YUZU_PAGESIZE);
}
}
}
const auto end = base + size;
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
@ -811,21 +802,33 @@ struct Memory::Impl {
return true;
}
void HandleRasterizerDownload(VAddr address, size_t size) {
void HandleRasterizerDownload(VAddr v_address, size_t size) {
const auto* p = GetPointerImpl(
v_address, []() {}, []() {});
if (!gpu_device_memory) [[unlikely]] {
gpu_device_memory = &system.Host1x().MemoryManager();
}
const size_t core = system.GetCurrentHostThreadID();
auto& current_area = rasterizer_read_areas[core];
const VAddr end_address = address + size;
if (current_area.start_address <= address && end_address <= current_area.end_address)
[[likely]] {
return;
}
current_area = system.GPU().OnCPURead(address, size);
gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) {
const DAddr end_address = address + size;
if (current_area.start_address <= address && end_address <= current_area.end_address)
[[likely]] {
return;
}
current_area = system.GPU().OnCPURead(address, size);
});
}
void HandleRasterizerWrite(VAddr address, size_t size) {
void HandleRasterizerWrite(VAddr v_address, size_t size) {
const auto* p = GetPointerImpl(
v_address, []() {}, []() {});
constexpr size_t sys_core = Core::Hardware::NUM_CPU_CORES - 1;
const size_t core = std::min(system.GetCurrentHostThreadID(),
sys_core); // any other calls threads go to syscore.
if (!gpu_device_memory) [[unlikely]] {
gpu_device_memory = &system.Host1x().MemoryManager();
}
// Guard on sys_core;
if (core == sys_core) [[unlikely]] {
sys_core_guard.lock();
@ -835,36 +838,53 @@ struct Memory::Impl {
sys_core_guard.unlock();
}
});
auto& current_area = rasterizer_write_areas[core];
VAddr subaddress = address >> YUZU_PAGEBITS;
bool do_collection = current_area.last_address == subaddress;
if (!do_collection) [[unlikely]] {
do_collection = system.GPU().OnCPUWrite(address, size);
if (!do_collection) {
return;
gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) {
auto& current_area = rasterizer_write_areas[core];
PAddr subaddress = address >> YUZU_PAGEBITS;
bool do_collection = current_area.last_address == subaddress;
if (!do_collection) [[unlikely]] {
do_collection = system.GPU().OnCPUWrite(address, size);
if (!do_collection) {
return;
}
current_area.last_address = subaddress;
}
current_area.last_address = subaddress;
}
gpu_dirty_managers[core].Collect(address, size);
gpu_dirty_managers[core].Collect(address, size);
});
}
struct GPUDirtyState {
VAddr last_address;
PAddr last_address;
};
void InvalidateRegion(Common::ProcessAddress dest_addr, size_t size) {
system.GPU().InvalidateRegion(GetInteger(dest_addr), size);
}
void FlushRegion(Common::ProcessAddress dest_addr, size_t size) {
system.GPU().FlushRegion(GetInteger(dest_addr), size);
void InvalidateGPUMemory(u8* p, size_t size) {
constexpr size_t sys_core = Core::Hardware::NUM_CPU_CORES - 1;
const size_t core = std::min(system.GetCurrentHostThreadID(),
sys_core); // any other calls threads go to syscore.
if (!gpu_device_memory) [[unlikely]] {
gpu_device_memory = &system.Host1x().MemoryManager();
}
// Guard on sys_core;
if (core == sys_core) [[unlikely]] {
sys_core_guard.lock();
}
SCOPE_EXIT({
if (core == sys_core) [[unlikely]] {
sys_core_guard.unlock();
}
});
auto& gpu = system.GPU();
gpu_device_memory->ApplyOpOnPointer(
p, scratch_buffers[core], [&](DAddr address) { gpu.InvalidateRegion(address, size); });
}
Core::System& system;
Tegra::MaxwellDeviceMemoryManager* gpu_device_memory{};
Common::PageTable* current_page_table = nullptr;
std::array<VideoCore::RasterizerDownloadArea, Core::Hardware::NUM_CPU_CORES>
rasterizer_read_areas{};
std::array<GPUDirtyState, Core::Hardware::NUM_CPU_CORES> rasterizer_write_areas{};
std::array<Common::ScratchBuffer<u32>, Core::Hardware::NUM_CPU_CORES> scratch_buffers{};
std::span<Core::GPUDirtyMemoryManager> gpu_dirty_managers;
std::mutex sys_core_guard;
@ -1059,14 +1079,6 @@ void Memory::MarkRegionDebug(Common::ProcessAddress vaddr, u64 size, bool debug)
impl->MarkRegionDebug(GetInteger(vaddr), size, debug);
}
void Memory::InvalidateRegion(Common::ProcessAddress dest_addr, size_t size) {
impl->InvalidateRegion(dest_addr, size);
}
void Memory::FlushRegion(Common::ProcessAddress dest_addr, size_t size) {
impl->FlushRegion(dest_addr, size);
}
bool Memory::InvalidateNCE(Common::ProcessAddress vaddr, size_t size) {
[[maybe_unused]] bool mapped = true;
[[maybe_unused]] bool rasterizer = false;
@ -1078,10 +1090,10 @@ bool Memory::InvalidateNCE(Common::ProcessAddress vaddr, size_t size) {
GetInteger(vaddr));
mapped = false;
},
[&] {
impl->system.GPU().InvalidateRegion(GetInteger(vaddr), size);
rasterizer = true;
});
[&] { rasterizer = true; });
if (rasterizer) {
impl->InvalidateGPUMemory(ptr, size);
}
#ifdef __linux__
if (!rasterizer && mapped) {

View file

@ -12,6 +12,7 @@
#include "common/scratch_buffer.h"
#include "common/typed_address.h"
#include "core/guest_memory.h"
#include "core/hle/result.h"
namespace Common {
@ -486,10 +487,10 @@ public:
void MarkRegionDebug(Common::ProcessAddress vaddr, u64 size, bool debug);
void SetGPUDirtyManagers(std::span<Core::GPUDirtyMemoryManager> managers);
void InvalidateRegion(Common::ProcessAddress dest_addr, size_t size);
bool InvalidateNCE(Common::ProcessAddress vaddr, size_t size);
bool InvalidateSeparateHeap(void* fault_address);
void FlushRegion(Common::ProcessAddress dest_addr, size_t size);
private:
Core::System& system;
@ -498,209 +499,9 @@ private:
std::unique_ptr<Impl> impl;
};
enum GuestMemoryFlags : u32 {
Read = 1 << 0,
Write = 1 << 1,
Safe = 1 << 2,
Cached = 1 << 3,
SafeRead = Read | Safe,
SafeWrite = Write | Safe,
SafeReadWrite = SafeRead | SafeWrite,
SafeReadCachedWrite = SafeReadWrite | Cached,
UnsafeRead = Read,
UnsafeWrite = Write,
UnsafeReadWrite = UnsafeRead | UnsafeWrite,
UnsafeReadCachedWrite = UnsafeReadWrite | Cached,
};
namespace {
template <typename M, typename T, GuestMemoryFlags FLAGS>
class GuestMemory {
using iterator = T*;
using const_iterator = const T*;
using value_type = T;
using element_type = T;
using iterator_category = std::contiguous_iterator_tag;
public:
GuestMemory() = delete;
explicit GuestMemory(M& memory, u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr)
: m_memory{memory}, m_addr{addr}, m_size{size} {
static_assert(FLAGS & GuestMemoryFlags::Read || FLAGS & GuestMemoryFlags::Write);
if constexpr (FLAGS & GuestMemoryFlags::Read) {
Read(addr, size, backup);
}
}
~GuestMemory() = default;
T* data() noexcept {
return m_data_span.data();
}
const T* data() const noexcept {
return m_data_span.data();
}
size_t size() const noexcept {
return m_size;
}
size_t size_bytes() const noexcept {
return this->size() * sizeof(T);
}
[[nodiscard]] T* begin() noexcept {
return this->data();
}
[[nodiscard]] const T* begin() const noexcept {
return this->data();
}
[[nodiscard]] T* end() noexcept {
return this->data() + this->size();
}
[[nodiscard]] const T* end() const noexcept {
return this->data() + this->size();
}
T& operator[](size_t index) noexcept {
return m_data_span[index];
}
const T& operator[](size_t index) const noexcept {
return m_data_span[index];
}
void SetAddressAndSize(u64 addr, std::size_t size) noexcept {
m_addr = addr;
m_size = size;
m_addr_changed = true;
}
std::span<T> Read(u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr) noexcept {
m_addr = addr;
m_size = size;
if (m_size == 0) {
m_is_data_copy = true;
return {};
}
if (this->TrySetSpan()) {
if constexpr (FLAGS & GuestMemoryFlags::Safe) {
m_memory.FlushRegion(m_addr, this->size_bytes());
}
} else {
if (backup) {
backup->resize_destructive(this->size());
m_data_span = *backup;
} else {
m_data_copy.resize(this->size());
m_data_span = std::span(m_data_copy);
}
m_is_data_copy = true;
m_span_valid = true;
if constexpr (FLAGS & GuestMemoryFlags::Safe) {
m_memory.ReadBlock(m_addr, this->data(), this->size_bytes());
} else {
m_memory.ReadBlockUnsafe(m_addr, this->data(), this->size_bytes());
}
}
return m_data_span;
}
void Write(std::span<T> write_data) noexcept {
if constexpr (FLAGS & GuestMemoryFlags::Cached) {
m_memory.WriteBlockCached(m_addr, write_data.data(), this->size_bytes());
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
m_memory.WriteBlock(m_addr, write_data.data(), this->size_bytes());
} else {
m_memory.WriteBlockUnsafe(m_addr, write_data.data(), this->size_bytes());
}
}
bool TrySetSpan() noexcept {
if (u8* ptr = m_memory.GetSpan(m_addr, this->size_bytes()); ptr) {
m_data_span = {reinterpret_cast<T*>(ptr), this->size()};
m_span_valid = true;
return true;
}
return false;
}
protected:
bool IsDataCopy() const noexcept {
return m_is_data_copy;
}
bool AddressChanged() const noexcept {
return m_addr_changed;
}
M& m_memory;
u64 m_addr{};
size_t m_size{};
std::span<T> m_data_span{};
std::vector<T> m_data_copy{};
bool m_span_valid{false};
bool m_is_data_copy{false};
bool m_addr_changed{false};
};
template <typename M, typename T, GuestMemoryFlags FLAGS>
class GuestMemoryScoped : public GuestMemory<M, T, FLAGS> {
public:
GuestMemoryScoped() = delete;
explicit GuestMemoryScoped(M& memory, u64 addr, std::size_t size,
Common::ScratchBuffer<T>* backup = nullptr)
: GuestMemory<M, T, FLAGS>(memory, addr, size, backup) {
if constexpr (!(FLAGS & GuestMemoryFlags::Read)) {
if (!this->TrySetSpan()) {
if (backup) {
this->m_data_span = *backup;
this->m_span_valid = true;
this->m_is_data_copy = true;
}
}
}
}
~GuestMemoryScoped() {
if constexpr (FLAGS & GuestMemoryFlags::Write) {
if (this->size() == 0) [[unlikely]] {
return;
}
if (this->AddressChanged() || this->IsDataCopy()) {
ASSERT(this->m_span_valid);
if constexpr (FLAGS & GuestMemoryFlags::Cached) {
this->m_memory.WriteBlockCached(this->m_addr, this->data(), this->size_bytes());
} else if constexpr (FLAGS & GuestMemoryFlags::Safe) {
this->m_memory.WriteBlock(this->m_addr, this->data(), this->size_bytes());
} else {
this->m_memory.WriteBlockUnsafe(this->m_addr, this->data(), this->size_bytes());
}
} else if constexpr ((FLAGS & GuestMemoryFlags::Safe) ||
(FLAGS & GuestMemoryFlags::Cached)) {
this->m_memory.InvalidateRegion(this->m_addr, this->size_bytes());
}
}
}
};
} // namespace
template <typename T, GuestMemoryFlags FLAGS>
using CpuGuestMemory = GuestMemory<Memory, T, FLAGS>;
using CpuGuestMemory = GuestMemory<Core::Memory::Memory, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using CpuGuestMemoryScoped = GuestMemoryScoped<Memory, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using GpuGuestMemory = GuestMemory<Tegra::MemoryManager, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using GpuGuestMemoryScoped = GuestMemoryScoped<Tegra::MemoryManager, T, FLAGS>;
using CpuGuestMemoryScoped = GuestMemoryScoped<Core::Memory::Memory, T, FLAGS>;
} // namespace Core::Memory

View file

@ -24,9 +24,8 @@ constexpr VAddr c = 16 * HIGH_PAGE_SIZE;
class RasterizerInterface {
public:
void UpdatePagesCachedCount(VAddr addr, u64 size, int delta) {
const u64 page_start{addr >> Core::Memory::YUZU_PAGEBITS};
const u64 page_end{(addr + size + Core::Memory::YUZU_PAGESIZE - 1) >>
Core::Memory::YUZU_PAGEBITS};
const u64 page_start{addr >> Core::DEVICE_PAGEBITS};
const u64 page_end{(addr + size + Core::DEVICE_PAGESIZE - 1) >> Core::DEVICE_PAGEBITS};
for (u64 page = page_start; page < page_end; ++page) {
int& value = page_table[page];
value += delta;
@ -40,7 +39,7 @@ public:
}
[[nodiscard]] int Count(VAddr addr) const noexcept {
const auto it = page_table.find(addr >> Core::Memory::YUZU_PAGEBITS);
const auto it = page_table.find(addr >> Core::DEVICE_PAGEBITS);
return it == page_table.end() ? 0 : it->second;
}

View file

@ -71,6 +71,8 @@ add_library(video_core STATIC
host1x/ffmpeg/ffmpeg.h
host1x/control.cpp
host1x/control.h
host1x/gpu_device_memory_manager.cpp
host1x/gpu_device_memory_manager.h
host1x/host1x.cpp
host1x/host1x.h
host1x/nvdec.cpp
@ -93,6 +95,7 @@ add_library(video_core STATIC
gpu.h
gpu_thread.cpp
gpu_thread.h
guest_memory.h
invalidation_accumulator.h
memory_manager.cpp
memory_manager.h
@ -105,8 +108,6 @@ add_library(video_core STATIC
query_cache/query_stream.h
query_cache/types.h
query_cache.h
rasterizer_accelerated.cpp
rasterizer_accelerated.h
rasterizer_interface.h
renderer_base.cpp
renderer_base.h

View file

@ -33,13 +33,12 @@ struct NullBufferParams {};
*
* The buffer size and address is forcefully aligned to CPU page boundaries.
*/
template <class RasterizerInterface>
class BufferBase {
public:
static constexpr u64 BASE_PAGE_BITS = 16;
static constexpr u64 BASE_PAGE_SIZE = 1ULL << BASE_PAGE_BITS;
explicit BufferBase(RasterizerInterface& rasterizer_, VAddr cpu_addr_, u64 size_bytes_)
explicit BufferBase(VAddr cpu_addr_, u64 size_bytes_)
: cpu_addr{cpu_addr_}, size_bytes{size_bytes_} {}
explicit BufferBase(NullBufferParams) {}

File diff suppressed because it is too large Load diff

View file

@ -32,7 +32,6 @@
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/memory.h"
#include "video_core/buffer_cache/buffer_base.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/delayed_destruction_ring.h"
@ -41,7 +40,6 @@
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/slot_vector.h"
#include "video_core/texture_cache/types.h"
@ -94,7 +92,7 @@ static constexpr BufferId NULL_BUFFER_ID{0};
static constexpr u32 DEFAULT_SKIP_CACHE_SIZE = static_cast<u32>(4_KiB);
struct Binding {
VAddr cpu_addr{};
DAddr device_addr{};
u32 size{};
BufferId buffer_id;
};
@ -104,7 +102,7 @@ struct TextureBufferBinding : Binding {
};
static constexpr Binding NULL_BINDING{
.cpu_addr = 0,
.device_addr = 0,
.size = 0,
.buffer_id = NULL_BUFFER_ID,
};
@ -204,10 +202,10 @@ class BufferCache : public VideoCommon::ChannelSetupCaches<BufferCacheChannelInf
using Async_Buffer = typename P::Async_Buffer;
using MemoryTracker = typename P::MemoryTracker;
using IntervalCompare = std::less<VAddr>;
using IntervalInstance = boost::icl::interval_type_default<VAddr, std::less>;
using IntervalAllocator = boost::fast_pool_allocator<VAddr>;
using IntervalSet = boost::icl::interval_set<VAddr>;
using IntervalCompare = std::less<DAddr>;
using IntervalInstance = boost::icl::interval_type_default<DAddr, std::less>;
using IntervalAllocator = boost::fast_pool_allocator<DAddr>;
using IntervalSet = boost::icl::interval_set<DAddr>;
using IntervalType = typename IntervalSet::interval_type;
template <typename Type>
@ -230,32 +228,31 @@ class BufferCache : public VideoCommon::ChannelSetupCaches<BufferCacheChannelInf
using OverlapCombine = counter_add_functor<int>;
using OverlapSection = boost::icl::inter_section<int>;
using OverlapCounter = boost::icl::split_interval_map<VAddr, int>;
using OverlapCounter = boost::icl::split_interval_map<DAddr, int>;
struct OverlapResult {
boost::container::small_vector<BufferId, 16> ids;
VAddr begin;
VAddr end;
DAddr begin;
DAddr end;
bool has_stream_leap = false;
};
public:
explicit BufferCache(VideoCore::RasterizerInterface& rasterizer_,
Core::Memory::Memory& cpu_memory_, Runtime& runtime_);
explicit BufferCache(Tegra::MaxwellDeviceMemoryManager& device_memory_, Runtime& runtime_);
void TickFrame();
void WriteMemory(VAddr cpu_addr, u64 size);
void WriteMemory(DAddr device_addr, u64 size);
void CachedWriteMemory(VAddr cpu_addr, u64 size);
void CachedWriteMemory(DAddr device_addr, u64 size);
bool OnCPUWrite(VAddr cpu_addr, u64 size);
bool OnCPUWrite(DAddr device_addr, u64 size);
void DownloadMemory(VAddr cpu_addr, u64 size);
void DownloadMemory(DAddr device_addr, u64 size);
std::optional<VideoCore::RasterizerDownloadArea> GetFlushArea(VAddr cpu_addr, u64 size);
std::optional<VideoCore::RasterizerDownloadArea> GetFlushArea(DAddr device_addr, u64 size);
bool InlineMemory(VAddr dest_address, size_t copy_size, std::span<const u8> inlined_buffer);
bool InlineMemory(DAddr dest_address, size_t copy_size, std::span<const u8> inlined_buffer);
void BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr, u32 size);
@ -300,7 +297,7 @@ public:
ObtainBufferSynchronize sync_info,
ObtainBufferOperation post_op);
[[nodiscard]] std::pair<Buffer*, u32> ObtainCPUBuffer(VAddr gpu_addr, u32 size,
[[nodiscard]] std::pair<Buffer*, u32> ObtainCPUBuffer(DAddr gpu_addr, u32 size,
ObtainBufferSynchronize sync_info,
ObtainBufferOperation post_op);
void FlushCachedWrites();
@ -326,13 +323,13 @@ public:
bool DMAClear(GPUVAddr src_address, u64 amount, u32 value);
/// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
[[nodiscard]] bool IsRegionGpuModified(DAddr addr, size_t size);
/// Return true when a region is registered on the cache
[[nodiscard]] bool IsRegionRegistered(VAddr addr, size_t size);
[[nodiscard]] bool IsRegionRegistered(DAddr addr, size_t size);
/// Return true when a CPU region is modified from the CPU
[[nodiscard]] bool IsRegionCpuModified(VAddr addr, size_t size);
[[nodiscard]] bool IsRegionCpuModified(DAddr addr, size_t size);
void SetDrawIndirect(
const Tegra::Engines::DrawManager::IndirectParams* current_draw_indirect_) {
@ -366,9 +363,9 @@ private:
}
template <typename Func>
void ForEachBufferInRange(VAddr cpu_addr, u64 size, Func&& func) {
const u64 page_end = Common::DivCeil(cpu_addr + size, CACHING_PAGESIZE);
for (u64 page = cpu_addr >> CACHING_PAGEBITS; page < page_end;) {
void ForEachBufferInRange(DAddr device_addr, u64 size, Func&& func) {
const u64 page_end = Common::DivCeil(device_addr + size, CACHING_PAGESIZE);
for (u64 page = device_addr >> CACHING_PAGEBITS; page < page_end;) {
const BufferId buffer_id = page_table[page];
if (!buffer_id) {
++page;
@ -377,15 +374,15 @@ private:
Buffer& buffer = slot_buffers[buffer_id];
func(buffer_id, buffer);
const VAddr end_addr = buffer.CpuAddr() + buffer.SizeBytes();
const DAddr end_addr = buffer.CpuAddr() + buffer.SizeBytes();
page = Common::DivCeil(end_addr, CACHING_PAGESIZE);
}
}
template <typename Func>
void ForEachInRangeSet(IntervalSet& current_range, VAddr cpu_addr, u64 size, Func&& func) {
const VAddr start_address = cpu_addr;
const VAddr end_address = start_address + size;
void ForEachInRangeSet(IntervalSet& current_range, DAddr device_addr, u64 size, Func&& func) {
const DAddr start_address = device_addr;
const DAddr end_address = start_address + size;
const IntervalType search_interval{start_address, end_address};
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
@ -393,8 +390,8 @@ private:
}
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
VAddr inter_addr_end = it->upper();
VAddr inter_addr = it->lower();
DAddr inter_addr_end = it->upper();
DAddr inter_addr = it->lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
@ -406,10 +403,10 @@ private:
}
template <typename Func>
void ForEachInOverlapCounter(OverlapCounter& current_range, VAddr cpu_addr, u64 size,
void ForEachInOverlapCounter(OverlapCounter& current_range, DAddr device_addr, u64 size,
Func&& func) {
const VAddr start_address = cpu_addr;
const VAddr end_address = start_address + size;
const DAddr start_address = device_addr;
const DAddr end_address = start_address + size;
const IntervalType search_interval{start_address, end_address};
auto it = current_range.lower_bound(search_interval);
if (it == current_range.end()) {
@ -418,8 +415,8 @@ private:
auto end_it = current_range.upper_bound(search_interval);
for (; it != end_it; it++) {
auto& inter = it->first;
VAddr inter_addr_end = inter.upper();
VAddr inter_addr = inter.lower();
DAddr inter_addr_end = inter.upper();
DAddr inter_addr = inter.lower();
if (inter_addr_end > end_address) {
inter_addr_end = end_address;
}
@ -451,9 +448,9 @@ private:
} while (any_removals);
}
static bool IsRangeGranular(VAddr cpu_addr, size_t size) {
return (cpu_addr & ~Core::Memory::YUZU_PAGEMASK) ==
((cpu_addr + size) & ~Core::Memory::YUZU_PAGEMASK);
static bool IsRangeGranular(DAddr device_addr, size_t size) {
return (device_addr & ~Core::DEVICE_PAGEMASK) ==
((device_addr + size) & ~Core::DEVICE_PAGEMASK);
}
void RunGarbageCollector();
@ -508,15 +505,15 @@ private:
void UpdateComputeTextureBuffers();
void MarkWrittenBuffer(BufferId buffer_id, VAddr cpu_addr, u32 size);
void MarkWrittenBuffer(BufferId buffer_id, DAddr device_addr, u32 size);
[[nodiscard]] BufferId FindBuffer(VAddr cpu_addr, u32 size);
[[nodiscard]] BufferId FindBuffer(DAddr device_addr, u32 size);
[[nodiscard]] OverlapResult ResolveOverlaps(VAddr cpu_addr, u32 wanted_size);
[[nodiscard]] OverlapResult ResolveOverlaps(DAddr device_addr, u32 wanted_size);
void JoinOverlap(BufferId new_buffer_id, BufferId overlap_id, bool accumulate_stream_score);
[[nodiscard]] BufferId CreateBuffer(VAddr cpu_addr, u32 wanted_size);
[[nodiscard]] BufferId CreateBuffer(DAddr device_addr, u32 wanted_size);
void Register(BufferId buffer_id);
@ -527,7 +524,7 @@ private:
void TouchBuffer(Buffer& buffer, BufferId buffer_id) noexcept;
bool SynchronizeBuffer(Buffer& buffer, VAddr cpu_addr, u32 size);
bool SynchronizeBuffer(Buffer& buffer, DAddr device_addr, u32 size);
void UploadMemory(Buffer& buffer, u64 total_size_bytes, u64 largest_copy,
std::span<BufferCopy> copies);
@ -539,7 +536,7 @@ private:
void DownloadBufferMemory(Buffer& buffer_id);
void DownloadBufferMemory(Buffer& buffer_id, VAddr cpu_addr, u64 size);
void DownloadBufferMemory(Buffer& buffer_id, DAddr device_addr, u64 size);
void DeleteBuffer(BufferId buffer_id, bool do_not_mark = false);
@ -549,7 +546,7 @@ private:
[[nodiscard]] TextureBufferBinding GetTextureBufferBinding(GPUVAddr gpu_addr, u32 size,
PixelFormat format);
[[nodiscard]] std::span<const u8> ImmediateBufferWithData(VAddr cpu_addr, size_t size);
[[nodiscard]] std::span<const u8> ImmediateBufferWithData(DAddr device_addr, size_t size);
[[nodiscard]] std::span<u8> ImmediateBuffer(size_t wanted_capacity);
@ -557,11 +554,10 @@ private:
void ClearDownload(IntervalType subtract_interval);
void InlineMemoryImplementation(VAddr dest_address, size_t copy_size,
void InlineMemoryImplementation(DAddr dest_address, size_t copy_size,
std::span<const u8> inlined_buffer);
VideoCore::RasterizerInterface& rasterizer;
Core::Memory::Memory& cpu_memory;
Tegra::MaxwellDeviceMemoryManager& device_memory;
SlotVector<Buffer> slot_buffers;
DelayedDestructionRing<Buffer, 8> delayed_destruction_ring;
@ -598,7 +594,7 @@ private:
u64 critical_memory = 0;
BufferId inline_buffer_id;
std::array<BufferId, ((1ULL << 39) >> CACHING_PAGEBITS)> page_table;
std::array<BufferId, ((1ULL << 34) >> CACHING_PAGEBITS)> page_table;
Common::ScratchBuffer<u8> tmp_buffer;
};

View file

@ -17,19 +17,19 @@
namespace VideoCommon {
template <class RasterizerInterface>
template <typename DeviceTracker>
class MemoryTrackerBase {
static constexpr size_t MAX_CPU_PAGE_BITS = 39;
static constexpr size_t MAX_CPU_PAGE_BITS = 34;
static constexpr size_t HIGHER_PAGE_BITS = 22;
static constexpr size_t HIGHER_PAGE_SIZE = 1ULL << HIGHER_PAGE_BITS;
static constexpr size_t HIGHER_PAGE_MASK = HIGHER_PAGE_SIZE - 1ULL;
static constexpr size_t NUM_HIGH_PAGES = 1ULL << (MAX_CPU_PAGE_BITS - HIGHER_PAGE_BITS);
static constexpr size_t MANAGER_POOL_SIZE = 32;
static constexpr size_t WORDS_STACK_NEEDED = HIGHER_PAGE_SIZE / BYTES_PER_WORD;
using Manager = WordManager<RasterizerInterface, WORDS_STACK_NEEDED>;
using Manager = WordManager<DeviceTracker, WORDS_STACK_NEEDED>;
public:
MemoryTrackerBase(RasterizerInterface& rasterizer_) : rasterizer{&rasterizer_} {}
MemoryTrackerBase(DeviceTracker& device_tracker_) : device_tracker{&device_tracker_} {}
~MemoryTrackerBase() = default;
/// Returns the inclusive CPU modified range in a begin end pair
@ -74,7 +74,7 @@ public:
});
}
/// Mark region as CPU modified, notifying the rasterizer about this change
/// Mark region as CPU modified, notifying the device_tracker about this change
void MarkRegionAsCpuModified(VAddr dirty_cpu_addr, u64 query_size) {
IteratePages<true>(dirty_cpu_addr, query_size,
[](Manager* manager, u64 offset, size_t size) {
@ -83,7 +83,7 @@ public:
});
}
/// Unmark region as CPU modified, notifying the rasterizer about this change
/// Unmark region as CPU modified, notifying the device_tracker about this change
void UnmarkRegionAsCpuModified(VAddr dirty_cpu_addr, u64 query_size) {
IteratePages<true>(dirty_cpu_addr, query_size,
[](Manager* manager, u64 offset, size_t size) {
@ -139,7 +139,7 @@ public:
});
}
/// Flushes cached CPU writes, and notify the rasterizer about the deltas
/// Flushes cached CPU writes, and notify the device_tracker about the deltas
void FlushCachedWrites(VAddr query_cpu_addr, u64 query_size) noexcept {
IteratePages<false>(query_cpu_addr, query_size,
[](Manager* manager, [[maybe_unused]] u64 offset,
@ -280,7 +280,7 @@ private:
manager_pool.emplace_back();
auto& last_pool = manager_pool.back();
for (size_t i = 0; i < MANAGER_POOL_SIZE; i++) {
new (&last_pool[i]) Manager(0, *rasterizer, HIGHER_PAGE_SIZE);
new (&last_pool[i]) Manager(0, *device_tracker, HIGHER_PAGE_SIZE);
free_managers.push_back(&last_pool[i]);
}
return on_return();
@ -293,7 +293,7 @@ private:
std::unordered_set<u32> cached_pages;
RasterizerInterface* rasterizer = nullptr;
DeviceTracker* device_tracker = nullptr;
};
} // namespace VideoCommon

View file

@ -13,12 +13,12 @@
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/div_ceil.h"
#include "core/memory.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
namespace VideoCommon {
constexpr u64 PAGES_PER_WORD = 64;
constexpr u64 BYTES_PER_PAGE = Core::Memory::YUZU_PAGESIZE;
constexpr u64 BYTES_PER_PAGE = Core::DEVICE_PAGESIZE;
constexpr u64 BYTES_PER_WORD = PAGES_PER_WORD * BYTES_PER_PAGE;
enum class Type {
@ -163,11 +163,11 @@ struct Words {
WordsArray<stack_words> preflushable;
};
template <class RasterizerInterface, size_t stack_words = 1>
template <class DeviceTracker, size_t stack_words = 1>
class WordManager {
public:
explicit WordManager(VAddr cpu_addr_, RasterizerInterface& rasterizer_, u64 size_bytes)
: cpu_addr{cpu_addr_}, rasterizer{&rasterizer_}, words{size_bytes} {}
explicit WordManager(VAddr cpu_addr_, DeviceTracker& tracker_, u64 size_bytes)
: cpu_addr{cpu_addr_}, tracker{&tracker_}, words{size_bytes} {}
explicit WordManager() = default;
@ -279,7 +279,7 @@ public:
}
/**
* Loop over each page in the given range, turn off those bits and notify the rasterizer if
* Loop over each page in the given range, turn off those bits and notify the tracker if
* needed. Call the given function on each turned off range.
*
* @param query_cpu_range Base CPU address to loop over
@ -459,26 +459,26 @@ private:
}
/**
* Notify rasterizer about changes in the CPU tracking state of a word in the buffer
* Notify tracker about changes in the CPU tracking state of a word in the buffer
*
* @param word_index Index to the word to notify to the rasterizer
* @param word_index Index to the word to notify to the tracker
* @param current_bits Current state of the word
* @param new_bits New state of the word
*
* @tparam add_to_rasterizer True when the rasterizer should start tracking the new pages
* @tparam add_to_tracker True when the tracker should start tracking the new pages
*/
template <bool add_to_rasterizer>
template <bool add_to_tracker>
void NotifyRasterizer(u64 word_index, u64 current_bits, u64 new_bits) const {
u64 changed_bits = (add_to_rasterizer ? current_bits : ~current_bits) & new_bits;
u64 changed_bits = (add_to_tracker ? current_bits : ~current_bits) & new_bits;
VAddr addr = cpu_addr + word_index * BYTES_PER_WORD;
IteratePages(changed_bits, [&](size_t offset, size_t size) {
rasterizer->UpdatePagesCachedCount(addr + offset * BYTES_PER_PAGE,
size * BYTES_PER_PAGE, add_to_rasterizer ? 1 : -1);
tracker->UpdatePagesCachedCount(addr + offset * BYTES_PER_PAGE, size * BYTES_PER_PAGE,
add_to_tracker ? 1 : -1);
});
}
VAddr cpu_addr = 0;
RasterizerInterface* rasterizer = nullptr;
DeviceTracker* tracker = nullptr;
Words<stack_words> words;
};

View file

@ -5,10 +5,10 @@
#include "common/microprofile.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/dma_pusher.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/gpu.h"
#include "video_core/guest_memory.h"
#include "video_core/memory_manager.h"
namespace Tegra {
@ -85,15 +85,15 @@ bool DmaPusher::Step() {
}
}
const auto safe_process = [&] {
Core::Memory::GpuGuestMemory<Tegra::CommandHeader,
Core::Memory::GuestMemoryFlags::SafeRead>
Tegra::Memory::GpuGuestMemory<Tegra::CommandHeader,
Tegra::Memory::GuestMemoryFlags::SafeRead>
headers(memory_manager, dma_state.dma_get, command_list_header.size,
&command_headers);
ProcessCommands(headers);
};
const auto unsafe_process = [&] {
Core::Memory::GpuGuestMemory<Tegra::CommandHeader,
Core::Memory::GuestMemoryFlags::UnsafeRead>
Tegra::Memory::GpuGuestMemory<Tegra::CommandHeader,
Tegra::Memory::GuestMemoryFlags::UnsafeRead>
headers(memory_manager, dma_state.dma_get, command_list_header.size,
&command_headers);
ProcessCommands(headers);

View file

@ -5,8 +5,8 @@
#include "common/algorithm.h"
#include "common/assert.h"
#include "core/memory.h"
#include "video_core/engines/engine_upload.h"
#include "video_core/guest_memory.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/textures/decoders.h"
@ -68,7 +68,8 @@ void State::ProcessData(std::span<const u8> read_buffer) {
true, bytes_per_pixel, width, regs.dest.height, regs.dest.depth,
regs.dest.BlockHeight(), regs.dest.BlockDepth());
Core::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::SafeReadCachedWrite>
Tegra::Memory::GpuGuestMemoryScoped<u8,
Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp(memory_manager, address, dst_size, &tmp_buffer);
Tegra::Texture::SwizzleSubrect(tmp, read_buffer, bytes_per_pixel, width, regs.dest.height,

View file

@ -9,7 +9,6 @@
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/memory.h"
#include "video_core/dirty_flags.h"
#include "video_core/engines/draw_manager.h"
#include "video_core/engines/maxwell_3d.h"

View file

@ -8,9 +8,9 @@
#include "common/polyfill_ranges.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/guest_memory.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"
#include "video_core/textures/decoders.h"
@ -133,8 +133,8 @@ void MaxwellDMA::Launch() {
UNIMPLEMENTED_IF(regs.offset_out % 16 != 0);
read_buffer.resize_destructive(16);
for (u32 offset = 0; offset < regs.line_length_in; offset += 16) {
Core::Memory::GpuGuestMemoryScoped<
u8, Core::Memory::GuestMemoryFlags::SafeReadCachedWrite>
Tegra::Memory::GpuGuestMemoryScoped<
u8, Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp_write_buffer(memory_manager,
convert_linear_2_blocklinear_addr(regs.offset_in + offset),
16, &read_buffer);
@ -146,16 +146,16 @@ void MaxwellDMA::Launch() {
UNIMPLEMENTED_IF(regs.offset_out % 16 != 0);
read_buffer.resize_destructive(16);
for (u32 offset = 0; offset < regs.line_length_in; offset += 16) {
Core::Memory::GpuGuestMemoryScoped<
u8, Core::Memory::GuestMemoryFlags::SafeReadCachedWrite>
Tegra::Memory::GpuGuestMemoryScoped<
u8, Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp_write_buffer(memory_manager, regs.offset_in + offset, 16, &read_buffer);
tmp_write_buffer.SetAddressAndSize(
convert_linear_2_blocklinear_addr(regs.offset_out + offset), 16);
}
} else {
if (!accelerate.BufferCopy(regs.offset_in, regs.offset_out, regs.line_length_in)) {
Core::Memory::GpuGuestMemoryScoped<
u8, Core::Memory::GuestMemoryFlags::SafeReadCachedWrite>
Tegra::Memory::GpuGuestMemoryScoped<
u8, Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp_write_buffer(memory_manager, regs.offset_in, regs.line_length_in,
&read_buffer);
tmp_write_buffer.SetAddressAndSize(regs.offset_out, regs.line_length_in);
@ -226,9 +226,9 @@ void MaxwellDMA::CopyBlockLinearToPitch() {
const size_t dst_size = dst_operand.pitch * regs.line_count;
Core::Memory::GpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
Tegra::Memory::GpuGuestMemory<u8, Tegra::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
memory_manager, src_operand.address, src_size, &read_buffer);
Core::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::UnsafeReadCachedWrite>
Tegra::Memory::GpuGuestMemoryScoped<u8, Tegra::Memory::GuestMemoryFlags::UnsafeReadCachedWrite>
tmp_write_buffer(memory_manager, dst_operand.address, dst_size, &write_buffer);
UnswizzleSubrect(tmp_write_buffer, tmp_read_buffer, bytes_per_pixel, width, height, depth,
@ -290,9 +290,9 @@ void MaxwellDMA::CopyPitchToBlockLinear() {
GPUVAddr src_addr = regs.offset_in;
GPUVAddr dst_addr = regs.offset_out;
Core::Memory::GpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
Tegra::Memory::GpuGuestMemory<u8, Tegra::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
memory_manager, src_addr, src_size, &read_buffer);
Core::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::UnsafeReadCachedWrite>
Tegra::Memory::GpuGuestMemoryScoped<u8, Tegra::Memory::GuestMemoryFlags::UnsafeReadCachedWrite>
tmp_write_buffer(memory_manager, dst_addr, dst_size, &write_buffer);
// If the input is linear and the output is tiled, swizzle the input and copy it over.
@ -344,9 +344,9 @@ void MaxwellDMA::CopyBlockLinearToBlockLinear() {
intermediate_buffer.resize_destructive(mid_buffer_size);
Core::Memory::GpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
Tegra::Memory::GpuGuestMemory<u8, Tegra::Memory::GuestMemoryFlags::SafeRead> tmp_read_buffer(
memory_manager, regs.offset_in, src_size, &read_buffer);
Core::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::SafeReadCachedWrite>
Tegra::Memory::GpuGuestMemoryScoped<u8, Tegra::Memory::GuestMemoryFlags::SafeReadCachedWrite>
tmp_write_buffer(memory_manager, regs.offset_out, dst_size, &write_buffer);
UnswizzleSubrect(intermediate_buffer, tmp_read_buffer, bytes_per_pixel, src_width, src.height,

View file

@ -8,6 +8,7 @@
#include "common/scratch_buffer.h"
#include "video_core/engines/sw_blitter/blitter.h"
#include "video_core/engines/sw_blitter/converter.h"
#include "video_core/guest_memory.h"
#include "video_core/memory_manager.h"
#include "video_core/surface.h"
#include "video_core/textures/decoders.h"
@ -160,7 +161,7 @@ bool SoftwareBlitEngine::Blit(Fermi2D::Surface& src, Fermi2D::Surface& dst,
const auto dst_bytes_per_pixel = BytesPerBlock(PixelFormatFromRenderTargetFormat(dst.format));
const size_t src_size = get_surface_size(src, src_bytes_per_pixel);
Core::Memory::GpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::SafeRead> tmp_buffer(
Tegra::Memory::GpuGuestMemory<u8, Tegra::Memory::GuestMemoryFlags::SafeRead> tmp_buffer(
memory_manager, src.Address(), src_size, &impl->tmp_buffer);
const size_t src_copy_size = src_extent_x * src_extent_y * src_bytes_per_pixel;
@ -220,7 +221,7 @@ bool SoftwareBlitEngine::Blit(Fermi2D::Surface& src, Fermi2D::Surface& dst,
}
const size_t dst_size = get_surface_size(dst, dst_bytes_per_pixel);
Core::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::SafeReadWrite>
Tegra::Memory::GpuGuestMemoryScoped<u8, Tegra::Memory::GuestMemoryFlags::SafeReadWrite>
tmp_buffer2(memory_manager, dst.Address(), dst_size, &impl->tmp_buffer);
if (dst.linear == Fermi2D::MemoryLayout::BlockLinear) {

View file

@ -14,7 +14,7 @@ namespace Tegra {
* Struct describing framebuffer configuration
*/
struct FramebufferConfig {
VAddr address{};
DAddr address{};
u32 offset{};
u32 width{};
u32 height{};

View file

@ -85,7 +85,8 @@ struct GPU::Impl {
void BindRenderer(std::unique_ptr<VideoCore::RendererBase> renderer_) {
renderer = std::move(renderer_);
rasterizer = renderer->ReadRasterizer();
host1x.MemoryManager().BindRasterizer(rasterizer);
host1x.MemoryManager().BindInterface(rasterizer);
host1x.GMMU().BindRasterizer(rasterizer);
}
/// Flush all current written commands into the host GPU for execution.
@ -95,8 +96,8 @@ struct GPU::Impl {
/// Synchronizes CPU writes with Host GPU memory.
void InvalidateGPUCache() {
std::function<void(VAddr, size_t)> callback_writes(
[this](VAddr address, size_t size) { rasterizer->OnCacheInvalidation(address, size); });
std::function<void(PAddr, size_t)> callback_writes(
[this](PAddr address, size_t size) { rasterizer->OnCacheInvalidation(address, size); });
system.GatherGPUDirtyMemory(callback_writes);
}
@ -279,11 +280,11 @@ struct GPU::Impl {
}
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
void FlushRegion(VAddr addr, u64 size) {
void FlushRegion(DAddr addr, u64 size) {
gpu_thread.FlushRegion(addr, size);
}
VideoCore::RasterizerDownloadArea OnCPURead(VAddr addr, u64 size) {
VideoCore::RasterizerDownloadArea OnCPURead(DAddr addr, u64 size) {
auto raster_area = rasterizer->GetFlushArea(addr, size);
if (raster_area.preemtive) {
return raster_area;
@ -299,16 +300,16 @@ struct GPU::Impl {
}
/// Notify rasterizer that any caches of the specified region should be invalidated
void InvalidateRegion(VAddr addr, u64 size) {
void InvalidateRegion(DAddr addr, u64 size) {
gpu_thread.InvalidateRegion(addr, size);
}
bool OnCPUWrite(VAddr addr, u64 size) {
bool OnCPUWrite(DAddr addr, u64 size) {
return rasterizer->OnCPUWrite(addr, size);
}
/// Notify rasterizer that any caches of the specified region should be flushed and invalidated
void FlushAndInvalidateRegion(VAddr addr, u64 size) {
void FlushAndInvalidateRegion(DAddr addr, u64 size) {
gpu_thread.FlushAndInvalidateRegion(addr, size);
}
@ -437,7 +438,7 @@ void GPU::OnCommandListEnd() {
impl->OnCommandListEnd();
}
u64 GPU::RequestFlush(VAddr addr, std::size_t size) {
u64 GPU::RequestFlush(DAddr addr, std::size_t size) {
return impl->RequestSyncOperation(
[this, addr, size]() { impl->rasterizer->FlushRegion(addr, size); });
}
@ -557,23 +558,23 @@ void GPU::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) {
impl->SwapBuffers(framebuffer);
}
VideoCore::RasterizerDownloadArea GPU::OnCPURead(VAddr addr, u64 size) {
VideoCore::RasterizerDownloadArea GPU::OnCPURead(PAddr addr, u64 size) {
return impl->OnCPURead(addr, size);
}
void GPU::FlushRegion(VAddr addr, u64 size) {
void GPU::FlushRegion(DAddr addr, u64 size) {
impl->FlushRegion(addr, size);
}
void GPU::InvalidateRegion(VAddr addr, u64 size) {
void GPU::InvalidateRegion(DAddr addr, u64 size) {
impl->InvalidateRegion(addr, size);
}
bool GPU::OnCPUWrite(VAddr addr, u64 size) {
bool GPU::OnCPUWrite(DAddr addr, u64 size) {
return impl->OnCPUWrite(addr, size);
}
void GPU::FlushAndInvalidateRegion(VAddr addr, u64 size) {
void GPU::FlushAndInvalidateRegion(DAddr addr, u64 size) {
impl->FlushAndInvalidateRegion(addr, size);
}

View file

@ -158,7 +158,7 @@ public:
void InitAddressSpace(Tegra::MemoryManager& memory_manager);
/// Request a host GPU memory flush from the CPU.
[[nodiscard]] u64 RequestFlush(VAddr addr, std::size_t size);
[[nodiscard]] u64 RequestFlush(DAddr addr, std::size_t size);
/// Obtains current flush request fence id.
[[nodiscard]] u64 CurrentSyncRequestFence() const;
@ -242,20 +242,20 @@ public:
void SwapBuffers(const Tegra::FramebufferConfig* framebuffer);
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
[[nodiscard]] VideoCore::RasterizerDownloadArea OnCPURead(VAddr addr, u64 size);
[[nodiscard]] VideoCore::RasterizerDownloadArea OnCPURead(DAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
void FlushRegion(VAddr addr, u64 size);
void FlushRegion(DAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be invalidated
void InvalidateRegion(VAddr addr, u64 size);
void InvalidateRegion(DAddr addr, u64 size);
/// Notify rasterizer that CPU is trying to write this area. It returns true if the area is
/// sensible, false otherwise
bool OnCPUWrite(VAddr addr, u64 size);
bool OnCPUWrite(DAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be flushed and invalidated
void FlushAndInvalidateRegion(VAddr addr, u64 size);
void FlushAndInvalidateRegion(DAddr addr, u64 size);
private:
struct Impl;

View file

@ -82,7 +82,7 @@ void ThreadManager::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) {
PushCommand(SwapBuffersCommand(framebuffer ? std::make_optional(*framebuffer) : std::nullopt));
}
void ThreadManager::FlushRegion(VAddr addr, u64 size) {
void ThreadManager::FlushRegion(DAddr addr, u64 size) {
if (!is_async) {
// Always flush with synchronous GPU mode
PushCommand(FlushRegionCommand(addr, size));
@ -101,11 +101,11 @@ void ThreadManager::TickGPU() {
PushCommand(GPUTickCommand());
}
void ThreadManager::InvalidateRegion(VAddr addr, u64 size) {
void ThreadManager::InvalidateRegion(DAddr addr, u64 size) {
rasterizer->OnCacheInvalidation(addr, size);
}
void ThreadManager::FlushAndInvalidateRegion(VAddr addr, u64 size) {
void ThreadManager::FlushAndInvalidateRegion(DAddr addr, u64 size) {
// Skip flush on asynch mode, as FlushAndInvalidateRegion is not used for anything too important
rasterizer->OnCacheInvalidation(addr, size);
}

View file

@ -54,26 +54,26 @@ struct SwapBuffersCommand final {
/// Command to signal to the GPU thread to flush a region
struct FlushRegionCommand final {
explicit constexpr FlushRegionCommand(VAddr addr_, u64 size_) : addr{addr_}, size{size_} {}
explicit constexpr FlushRegionCommand(DAddr addr_, u64 size_) : addr{addr_}, size{size_} {}
VAddr addr;
DAddr addr;
u64 size;
};
/// Command to signal to the GPU thread to invalidate a region
struct InvalidateRegionCommand final {
explicit constexpr InvalidateRegionCommand(VAddr addr_, u64 size_) : addr{addr_}, size{size_} {}
explicit constexpr InvalidateRegionCommand(DAddr addr_, u64 size_) : addr{addr_}, size{size_} {}
VAddr addr;
DAddr addr;
u64 size;
};
/// Command to signal to the GPU thread to flush and invalidate a region
struct FlushAndInvalidateRegionCommand final {
explicit constexpr FlushAndInvalidateRegionCommand(VAddr addr_, u64 size_)
explicit constexpr FlushAndInvalidateRegionCommand(DAddr addr_, u64 size_)
: addr{addr_}, size{size_} {}
VAddr addr;
DAddr addr;
u64 size;
};
@ -122,13 +122,13 @@ public:
void SwapBuffers(const Tegra::FramebufferConfig* framebuffer);
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
void FlushRegion(VAddr addr, u64 size);
void FlushRegion(DAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be invalidated
void InvalidateRegion(VAddr addr, u64 size);
void InvalidateRegion(DAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be flushed and invalidated
void FlushAndInvalidateRegion(VAddr addr, u64 size);
void FlushAndInvalidateRegion(DAddr addr, u64 size);
void TickGPU();

30
src/video_core/guest_memory.h Executable file
View file

@ -0,0 +1,30 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <iterator>
#include <memory>
#include <optional>
#include <span>
#include <vector>
#include "common/scratch_buffer.h"
#include "core/guest_memory.h"
#include "video_core/memory_manager.h"
namespace Tegra::Memory {
using GuestMemoryFlags = Core::Memory::GuestMemoryFlags;
template <typename T, GuestMemoryFlags FLAGS>
using DeviceGuestMemory = Core::Memory::GuestMemory<Tegra::MaxwellDeviceMemoryManager, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using DeviceGuestMemoryScoped =
Core::Memory::GuestMemoryScoped<Tegra::MaxwellDeviceMemoryManager, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using GpuGuestMemory = Core::Memory::GuestMemory<Tegra::MemoryManager, T, FLAGS>;
template <typename T, GuestMemoryFlags FLAGS>
using GpuGuestMemoryScoped = Core::Memory::GuestMemoryScoped<Tegra::MemoryManager, T, FLAGS>;
} // namespace Tegra::Memory

View file

@ -32,13 +32,12 @@ H264::~H264() = default;
std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state,
size_t* out_configuration_size, bool is_first_frame) {
H264DecoderContext context;
host1x.MemoryManager().ReadBlock(state.picture_info_offset, &context,
sizeof(H264DecoderContext));
host1x.GMMU().ReadBlock(state.picture_info_offset, &context, sizeof(H264DecoderContext));
const s64 frame_number = context.h264_parameter_set.frame_number.Value();
if (!is_first_frame && frame_number != 0) {
frame.resize_destructive(context.stream_len);
host1x.MemoryManager().ReadBlock(state.frame_bitstream_offset, frame.data(), frame.size());
host1x.GMMU().ReadBlock(state.frame_bitstream_offset, frame.data(), frame.size());
*out_configuration_size = 0;
return frame;
}
@ -159,8 +158,8 @@ std::span<const u8> H264::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters
std::memcpy(frame.data(), encoded_header.data(), encoded_header.size());
*out_configuration_size = encoded_header.size();
host1x.MemoryManager().ReadBlock(state.frame_bitstream_offset,
frame.data() + encoded_header.size(), context.stream_len);
host1x.GMMU().ReadBlock(state.frame_bitstream_offset, frame.data() + encoded_header.size(),
context.stream_len);
return frame;
}

View file

@ -14,7 +14,7 @@ VP8::~VP8() = default;
std::span<const u8> VP8::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters& state) {
VP8PictureInfo info;
host1x.MemoryManager().ReadBlock(state.picture_info_offset, &info, sizeof(VP8PictureInfo));
host1x.GMMU().ReadBlock(state.picture_info_offset, &info, sizeof(VP8PictureInfo));
const bool is_key_frame = info.key_frame == 1u;
const auto bitstream_size = static_cast<size_t>(info.vld_buffer_size);
@ -45,7 +45,7 @@ std::span<const u8> VP8::ComposeFrame(const Host1x::NvdecCommon::NvdecRegisters&
frame[9] = static_cast<u8>(((info.frame_height >> 8) & 0x3f));
}
const u64 bitstream_offset = state.frame_bitstream_offset;
host1x.MemoryManager().ReadBlock(bitstream_offset, frame.data() + header_size, bitstream_size);
host1x.GMMU().ReadBlock(bitstream_offset, frame.data() + header_size, bitstream_size);
return frame;
}

View file

@ -358,7 +358,7 @@ void VP9::WriteMvProbabilityUpdate(VpxRangeEncoder& writer, u8 new_prob, u8 old_
Vp9PictureInfo VP9::GetVp9PictureInfo(const Host1x::NvdecCommon::NvdecRegisters& state) {
PictureInfo picture_info;
host1x.MemoryManager().ReadBlock(state.picture_info_offset, &picture_info, sizeof(PictureInfo));
host1x.GMMU().ReadBlock(state.picture_info_offset, &picture_info, sizeof(PictureInfo));
Vp9PictureInfo vp9_info = picture_info.Convert();
InsertEntropy(state.vp9_entropy_probs_offset, vp9_info.entropy);
@ -373,7 +373,7 @@ Vp9PictureInfo VP9::GetVp9PictureInfo(const Host1x::NvdecCommon::NvdecRegisters&
void VP9::InsertEntropy(u64 offset, Vp9EntropyProbs& dst) {
EntropyProbs entropy;
host1x.MemoryManager().ReadBlock(offset, &entropy, sizeof(EntropyProbs));
host1x.GMMU().ReadBlock(offset, &entropy, sizeof(EntropyProbs));
entropy.Convert(dst);
}
@ -383,9 +383,8 @@ Vp9FrameContainer VP9::GetCurrentFrame(const Host1x::NvdecCommon::NvdecRegisters
// gpu.SyncGuestHost(); epic, why?
current_frame.info = GetVp9PictureInfo(state);
current_frame.bit_stream.resize(current_frame.info.bitstream_size);
host1x.MemoryManager().ReadBlock(state.frame_bitstream_offset,
current_frame.bit_stream.data(),
current_frame.info.bitstream_size);
host1x.GMMU().ReadBlock(state.frame_bitstream_offset, current_frame.bit_stream.data(),
current_frame.info.bitstream_size);
}
if (!next_frame.bit_stream.empty()) {
Vp9FrameContainer temp{

View file

@ -0,0 +1,32 @@
// SPDX-FileCopyrightText: 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "core/device_memory_manager.inc"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/rasterizer_interface.h"
namespace Tegra {
struct MaxwellDeviceMethods {
static inline void MarkRegionCaching(Core::Memory::Memory* interface, VAddr address,
size_t size, bool caching) {
interface->RasterizerMarkRegionCached(address, size, caching);
}
};
} // namespace Tegra
template struct Core::DeviceMemoryManagerAllocator<Tegra::MaxwellDeviceTraits>;
template class Core::DeviceMemoryManager<Tegra::MaxwellDeviceTraits>;
template const u8* Tegra::MaxwellDeviceMemoryManager::GetPointer<u8>(DAddr addr) const;
template u8* Tegra::MaxwellDeviceMemoryManager::GetPointer<u8>(DAddr addr);
template u8 Tegra::MaxwellDeviceMemoryManager::Read<u8>(DAddr addr) const;
template u16 Tegra::MaxwellDeviceMemoryManager::Read<u16>(DAddr addr) const;
template u32 Tegra::MaxwellDeviceMemoryManager::Read<u32>(DAddr addr) const;
template u64 Tegra::MaxwellDeviceMemoryManager::Read<u64>(DAddr addr) const;
template void Tegra::MaxwellDeviceMemoryManager::Write<u8>(DAddr addr, u8 data);
template void Tegra::MaxwellDeviceMemoryManager::Write<u16>(DAddr addr, u16 data);
template void Tegra::MaxwellDeviceMemoryManager::Write<u32>(DAddr addr, u32 data);
template void Tegra::MaxwellDeviceMemoryManager::Write<u64>(DAddr addr, u64 data);

View file

@ -0,0 +1,24 @@
// SPDX-FileCopyrightText: 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "core/device_memory_manager.h"
namespace VideoCore {
class RasterizerInterface;
}
namespace Tegra {
struct MaxwellDeviceMethods;
struct MaxwellDeviceTraits {
static constexpr size_t device_virtual_bits = 34;
using DeviceInterface = typename VideoCore::RasterizerInterface;
using DeviceMethods = MaxwellDeviceMethods;
};
using MaxwellDeviceMemoryManager = Core::DeviceMemoryManager<MaxwellDeviceTraits>;
} // namespace Tegra

View file

@ -9,9 +9,12 @@ namespace Tegra {
namespace Host1x {
Host1x::Host1x(Core::System& system_)
: system{system_}, syncpoint_manager{}, memory_manager{system, 32, 12},
: system{system_}, syncpoint_manager{},
memory_manager(system.DeviceMemory()), gmmu_manager{system, memory_manager, 32, 12},
allocator{std::make_unique<Common::FlatAllocator<u32, 0, 32>>(1 << 12)} {}
Host1x::~Host1x() = default;
} // namespace Host1x
} // namespace Tegra

View file

@ -6,6 +6,7 @@
#include "common/common_types.h"
#include "common/address_space.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/host1x/syncpoint_manager.h"
#include "video_core/memory_manager.h"
@ -20,6 +21,7 @@ namespace Host1x {
class Host1x {
public:
explicit Host1x(Core::System& system);
~Host1x();
SyncpointManager& GetSyncpointManager() {
return syncpoint_manager;
@ -29,14 +31,22 @@ public:
return syncpoint_manager;
}
Tegra::MemoryManager& MemoryManager() {
Tegra::MaxwellDeviceMemoryManager& MemoryManager() {
return memory_manager;
}
const Tegra::MemoryManager& MemoryManager() const {
const Tegra::MaxwellDeviceMemoryManager& MemoryManager() const {
return memory_manager;
}
Tegra::MemoryManager& GMMU() {
return gmmu_manager;
}
const Tegra::MemoryManager& GMMU() const {
return gmmu_manager;
}
Common::FlatAllocator<u32, 0, 32>& Allocator() {
return *allocator;
}
@ -48,7 +58,8 @@ public:
private:
Core::System& system;
SyncpointManager syncpoint_manager;
Tegra::MemoryManager memory_manager;
Tegra::MaxwellDeviceMemoryManager memory_manager;
Tegra::MemoryManager gmmu_manager;
std::unique_ptr<Common::FlatAllocator<u32, 0, 32>> allocator;
};

View file

@ -81,7 +81,7 @@ void Vic::Execute() {
LOG_ERROR(Service_NVDRV, "VIC Luma address not set.");
return;
}
const VicConfig config{host1x.MemoryManager().Read<u64>(config_struct_address + 0x20)};
const VicConfig config{host1x.GMMU().Read<u64>(config_struct_address + 0x20)};
auto frame = nvdec_processor->GetFrame();
if (!frame) {
return;
@ -162,12 +162,12 @@ void Vic::WriteRGBFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& c
Texture::SwizzleSubrect(luma_buffer, frame_buff, 4, width, height, 1, 0, 0, width, height,
block_height, 0, width * 4);
host1x.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(), size);
host1x.GMMU().WriteBlock(output_surface_luma_address, luma_buffer.data(), size);
} else {
// send pitch linear frame
const size_t linear_size = width * height * 4;
host1x.MemoryManager().WriteBlock(output_surface_luma_address, converted_frame_buf_addr,
linear_size);
host1x.GMMU().WriteBlock(output_surface_luma_address, converted_frame_buf_addr,
linear_size);
}
}
@ -193,8 +193,7 @@ void Vic::WriteYUVFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& c
const std::size_t dst = y * aligned_width;
std::memcpy(luma_buffer.data() + dst, luma_src + src, frame_width);
}
host1x.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(),
luma_buffer.size());
host1x.GMMU().WriteBlock(output_surface_luma_address, luma_buffer.data(), luma_buffer.size());
// Chroma
const std::size_t half_height = frame_height / 2;
@ -233,8 +232,8 @@ void Vic::WriteYUVFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& c
ASSERT(false);
break;
}
host1x.MemoryManager().WriteBlock(output_surface_chroma_address, chroma_buffer.data(),
chroma_buffer.size());
host1x.GMMU().WriteBlock(output_surface_chroma_address, chroma_buffer.data(),
chroma_buffer.size());
}
} // namespace Host1x

View file

@ -7,25 +7,26 @@
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/device_memory.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "video_core/guest_memory.h"
#include "video_core/host1x/host1x.h"
#include "video_core/invalidation_accumulator.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
namespace Tegra {
using Core::Memory::GuestMemoryFlags;
using Tegra::Memory::GuestMemoryFlags;
std::atomic<size_t> MemoryManager::unique_identifier_generator{};
MemoryManager::MemoryManager(Core::System& system_, u64 address_space_bits_, u64 big_page_bits_,
u64 page_bits_)
: system{system_}, memory{system.ApplicationMemory()}, device_memory{system.DeviceMemory()},
address_space_bits{address_space_bits_}, page_bits{page_bits_}, big_page_bits{big_page_bits_},
entries{}, big_entries{}, page_table{address_space_bits, address_space_bits + page_bits - 38,
page_bits != big_page_bits ? page_bits : 0},
MemoryManager::MemoryManager(Core::System& system_, MaxwellDeviceMemoryManager& memory_,
u64 address_space_bits_, u64 big_page_bits_, u64 page_bits_)
: system{system_}, memory{memory_}, address_space_bits{address_space_bits_},
page_bits{page_bits_}, big_page_bits{big_page_bits_}, entries{}, big_entries{},
page_table{address_space_bits, address_space_bits + page_bits - 38,
page_bits != big_page_bits ? page_bits : 0},
kind_map{PTEKind::INVALID}, unique_identifier{unique_identifier_generator.fetch_add(
1, std::memory_order_acq_rel)},
accumulator{std::make_unique<VideoCommon::InvalidationAccumulator>()} {
@ -42,11 +43,16 @@ MemoryManager::MemoryManager(Core::System& system_, u64 address_space_bits_, u64
big_page_table_mask = big_page_table_size - 1;
big_entries.resize(big_page_table_size / 32, 0);
big_page_table_cpu.resize(big_page_table_size);
big_page_table_dev.resize(big_page_table_size);
big_page_continuous.resize(big_page_table_size / continuous_bits, 0);
entries.resize(page_table_size / 32, 0);
}
MemoryManager::MemoryManager(Core::System& system_, u64 address_space_bits_, u64 big_page_bits_,
u64 page_bits_)
: MemoryManager(system_, system_.Host1x().MemoryManager(), address_space_bits_, big_page_bits_,
page_bits_) {}
MemoryManager::~MemoryManager() = default;
template <bool is_big_page>
@ -100,7 +106,7 @@ inline void MemoryManager::SetBigPageContinuous(size_t big_page_index, bool valu
}
template <MemoryManager::EntryType entry_type>
GPUVAddr MemoryManager::PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size,
GPUVAddr MemoryManager::PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] DAddr dev_addr, size_t size,
PTEKind kind) {
[[maybe_unused]] u64 remaining_size{size};
if constexpr (entry_type == EntryType::Mapped) {
@ -114,9 +120,9 @@ GPUVAddr MemoryManager::PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cp
rasterizer->ModifyGPUMemory(unique_identifier, current_gpu_addr, page_size);
}
if constexpr (entry_type == EntryType::Mapped) {
const VAddr current_cpu_addr = cpu_addr + offset;
const DAddr current_dev_addr = dev_addr + offset;
const auto index = PageEntryIndex<false>(current_gpu_addr);
const u32 sub_value = static_cast<u32>(current_cpu_addr >> cpu_page_bits);
const u32 sub_value = static_cast<u32>(current_dev_addr >> cpu_page_bits);
page_table[index] = sub_value;
}
remaining_size -= page_size;
@ -126,7 +132,7 @@ GPUVAddr MemoryManager::PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cp
}
template <MemoryManager::EntryType entry_type>
GPUVAddr MemoryManager::BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr,
GPUVAddr MemoryManager::BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] DAddr dev_addr,
size_t size, PTEKind kind) {
[[maybe_unused]] u64 remaining_size{size};
for (u64 offset{}; offset < size; offset += big_page_size) {
@ -137,20 +143,20 @@ GPUVAddr MemoryManager::BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr
rasterizer->ModifyGPUMemory(unique_identifier, current_gpu_addr, big_page_size);
}
if constexpr (entry_type == EntryType::Mapped) {
const VAddr current_cpu_addr = cpu_addr + offset;
const DAddr current_dev_addr = dev_addr + offset;
const auto index = PageEntryIndex<true>(current_gpu_addr);
const u32 sub_value = static_cast<u32>(current_cpu_addr >> cpu_page_bits);
big_page_table_cpu[index] = sub_value;
const u32 sub_value = static_cast<u32>(current_dev_addr >> cpu_page_bits);
big_page_table_dev[index] = sub_value;
const bool is_continuous = ([&] {
uintptr_t base_ptr{
reinterpret_cast<uintptr_t>(memory.GetPointerSilent(current_cpu_addr))};
reinterpret_cast<uintptr_t>(memory.GetPointer<u8>(current_dev_addr))};
if (base_ptr == 0) {
return false;
}
for (VAddr start_cpu = current_cpu_addr + page_size;
start_cpu < current_cpu_addr + big_page_size; start_cpu += page_size) {
for (DAddr start_cpu = current_dev_addr + page_size;
start_cpu < current_dev_addr + big_page_size; start_cpu += page_size) {
base_ptr += page_size;
auto next_ptr = reinterpret_cast<uintptr_t>(memory.GetPointerSilent(start_cpu));
auto next_ptr = reinterpret_cast<uintptr_t>(memory.GetPointer<u8>(start_cpu));
if (next_ptr == 0 || base_ptr != next_ptr) {
return false;
}
@ -172,12 +178,12 @@ void MemoryManager::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_)
rasterizer = rasterizer_;
}
GPUVAddr MemoryManager::Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size, PTEKind kind,
GPUVAddr MemoryManager::Map(GPUVAddr gpu_addr, DAddr dev_addr, std::size_t size, PTEKind kind,
bool is_big_pages) {
if (is_big_pages) [[likely]] {
return BigPageTableOp<EntryType::Mapped>(gpu_addr, cpu_addr, size, kind);
return BigPageTableOp<EntryType::Mapped>(gpu_addr, dev_addr, size, kind);
}
return PageTableOp<EntryType::Mapped>(gpu_addr, cpu_addr, size, kind);
return PageTableOp<EntryType::Mapped>(gpu_addr, dev_addr, size, kind);
}
GPUVAddr MemoryManager::MapSparse(GPUVAddr gpu_addr, std::size_t size, bool is_big_pages) {
@ -202,7 +208,7 @@ void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) {
PageTableOp<EntryType::Free>(gpu_addr, 0, size, PTEKind::INVALID);
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
std::optional<DAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
if (!IsWithinGPUAddressRange(gpu_addr)) [[unlikely]] {
return std::nullopt;
}
@ -211,17 +217,17 @@ std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const {
return std::nullopt;
}
const VAddr cpu_addr_base = static_cast<VAddr>(page_table[PageEntryIndex<false>(gpu_addr)])
const DAddr dev_addr_base = static_cast<DAddr>(page_table[PageEntryIndex<false>(gpu_addr)])
<< cpu_page_bits;
return cpu_addr_base + (gpu_addr & page_mask);
return dev_addr_base + (gpu_addr & page_mask);
}
const VAddr cpu_addr_base =
static_cast<VAddr>(big_page_table_cpu[PageEntryIndex<true>(gpu_addr)]) << cpu_page_bits;
return cpu_addr_base + (gpu_addr & big_page_mask);
const DAddr dev_addr_base =
static_cast<DAddr>(big_page_table_dev[PageEntryIndex<true>(gpu_addr)]) << cpu_page_bits;
return dev_addr_base + (gpu_addr & big_page_mask);
}
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const {
std::optional<DAddr> MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const {
size_t page_index{addr >> page_bits};
const size_t page_last{(addr + size + page_size - 1) >> page_bits};
while (page_index < page_last) {
@ -274,7 +280,7 @@ u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) {
return {};
}
return memory.GetPointer(*address);
return memory.GetPointer<u8>(*address);
}
const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
@ -283,7 +289,7 @@ const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const {
return {};
}
return memory.GetPointer(*address);
return memory.GetPointer<u8>(*address);
}
#ifdef _MSC_VER // no need for gcc / clang but msvc's compiler is more conservative with inlining.
@ -367,25 +373,25 @@ void MemoryManager::ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std:
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
const DAddr dev_addr_base =
(static_cast<DAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->FlushRegion(cpu_addr_base, copy_amount, which);
rasterizer->FlushRegion(dev_addr_base, copy_amount, which);
}
u8* physical = memory.GetPointer(cpu_addr_base);
u8* physical = memory.GetPointer<u8>(dev_addr_base);
std::memcpy(dest_buffer, physical, copy_amount);
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
const DAddr dev_addr_base =
(static_cast<DAddr>(big_page_table_dev[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->FlushRegion(cpu_addr_base, copy_amount, which);
rasterizer->FlushRegion(dev_addr_base, copy_amount, which);
}
if (!IsBigPageContinuous(page_index)) [[unlikely]] {
memory.ReadBlockUnsafe(cpu_addr_base, dest_buffer, copy_amount);
memory.ReadBlockUnsafe(dev_addr_base, dest_buffer, copy_amount);
} else {
u8* physical = memory.GetPointer(cpu_addr_base);
u8* physical = memory.GetPointer<u8>(dev_addr_base);
std::memcpy(dest_buffer, physical, copy_amount);
}
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
@ -416,25 +422,25 @@ void MemoryManager::WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffe
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
const DAddr dev_addr_base =
(static_cast<DAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount, which);
rasterizer->InvalidateRegion(dev_addr_base, copy_amount, which);
}
u8* physical = memory.GetPointer(cpu_addr_base);
u8* physical = memory.GetPointer<u8>(dev_addr_base);
std::memcpy(physical, src_buffer, copy_amount);
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
const DAddr dev_addr_base =
(static_cast<DAddr>(big_page_table_dev[page_index]) << cpu_page_bits) + offset;
if constexpr (is_safe) {
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount, which);
rasterizer->InvalidateRegion(dev_addr_base, copy_amount, which);
}
if (!IsBigPageContinuous(page_index)) [[unlikely]] {
memory.WriteBlockUnsafe(cpu_addr_base, src_buffer, copy_amount);
memory.WriteBlockUnsafe(dev_addr_base, src_buffer, copy_amount);
} else {
u8* physical = memory.GetPointer(cpu_addr_base);
u8* physical = memory.GetPointer<u8>(dev_addr_base);
std::memcpy(physical, src_buffer, copy_amount);
}
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
@ -470,14 +476,14 @@ void MemoryManager::FlushRegion(GPUVAddr gpu_addr, size_t size,
[[maybe_unused]] std::size_t copy_amount) {};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
rasterizer->FlushRegion(cpu_addr_base, copy_amount, which);
const DAddr dev_addr_base =
(static_cast<DAddr>(page_table[page_index]) << cpu_page_bits) + offset;
rasterizer->FlushRegion(dev_addr_base, copy_amount, which);
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
rasterizer->FlushRegion(cpu_addr_base, copy_amount, which);
const DAddr dev_addr_base =
(static_cast<DAddr>(big_page_table_dev[page_index]) << cpu_page_bits) + offset;
rasterizer->FlushRegion(dev_addr_base, copy_amount, which);
};
auto flush_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
@ -495,15 +501,15 @@ bool MemoryManager::IsMemoryDirty(GPUVAddr gpu_addr, size_t size,
[[maybe_unused]] std::size_t copy_amount) { return false; };
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
result |= rasterizer->MustFlushRegion(cpu_addr_base, copy_amount, which);
const DAddr dev_addr_base =
(static_cast<DAddr>(page_table[page_index]) << cpu_page_bits) + offset;
result |= rasterizer->MustFlushRegion(dev_addr_base, copy_amount, which);
return result;
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
result |= rasterizer->MustFlushRegion(cpu_addr_base, copy_amount, which);
const DAddr dev_addr_base =
(static_cast<DAddr>(big_page_table_dev[page_index]) << cpu_page_bits) + offset;
result |= rasterizer->MustFlushRegion(dev_addr_base, copy_amount, which);
return result;
};
auto check_short_pages = [&](std::size_t page_index, std::size_t offset,
@ -517,7 +523,7 @@ bool MemoryManager::IsMemoryDirty(GPUVAddr gpu_addr, size_t size,
}
size_t MemoryManager::MaxContinuousRange(GPUVAddr gpu_addr, size_t size) const {
std::optional<VAddr> old_page_addr{};
std::optional<DAddr> old_page_addr{};
size_t range_so_far = 0;
bool result{false};
auto fail = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset,
@ -526,24 +532,24 @@ size_t MemoryManager::MaxContinuousRange(GPUVAddr gpu_addr, size_t size) const {
return true;
};
auto short_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != cpu_addr_base) {
const DAddr dev_addr_base =
(static_cast<DAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != dev_addr_base) {
result = true;
return true;
}
range_so_far += copy_amount;
old_page_addr = {cpu_addr_base + copy_amount};
old_page_addr = {dev_addr_base + copy_amount};
return false;
};
auto big_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != cpu_addr_base) {
const DAddr dev_addr_base =
(static_cast<DAddr>(big_page_table_dev[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != dev_addr_base) {
return true;
}
range_so_far += copy_amount;
old_page_addr = {cpu_addr_base + copy_amount};
old_page_addr = {dev_addr_base + copy_amount};
return false;
};
auto check_short_pages = [&](std::size_t page_index, std::size_t offset,
@ -568,14 +574,14 @@ void MemoryManager::InvalidateRegion(GPUVAddr gpu_addr, size_t size,
[[maybe_unused]] std::size_t copy_amount) {};
auto mapped_normal = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount, which);
const DAddr dev_addr_base =
(static_cast<DAddr>(page_table[page_index]) << cpu_page_bits) + offset;
rasterizer->InvalidateRegion(dev_addr_base, copy_amount, which);
};
auto mapped_big = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
rasterizer->InvalidateRegion(cpu_addr_base, copy_amount, which);
const DAddr dev_addr_base =
(static_cast<DAddr>(big_page_table_dev[page_index]) << cpu_page_bits) + offset;
rasterizer->InvalidateRegion(dev_addr_base, copy_amount, which);
};
auto invalidate_short_pages = [&](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
@ -587,7 +593,7 @@ void MemoryManager::InvalidateRegion(GPUVAddr gpu_addr, size_t size,
void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size,
VideoCommon::CacheType which) {
Core::Memory::GpuGuestMemoryScoped<u8, GuestMemoryFlags::SafeReadWrite> data(
Tegra::Memory::GpuGuestMemoryScoped<u8, GuestMemoryFlags::SafeReadWrite> data(
*this, gpu_src_addr, size);
data.SetAddressAndSize(gpu_dest_addr, size);
FlushRegion(gpu_dest_addr, size, which);
@ -600,18 +606,18 @@ bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const {
const std::size_t page{(page_index & big_page_mask) + size};
return page <= big_page_size;
}
const std::size_t page{(gpu_addr & Core::Memory::YUZU_PAGEMASK) + size};
return page <= Core::Memory::YUZU_PAGESIZE;
const std::size_t page{(gpu_addr & Core::DEVICE_PAGEMASK) + size};
return page <= Core::DEVICE_PAGESIZE;
}
if (GetEntry<false>(gpu_addr) != EntryType::Mapped) {
return false;
}
const std::size_t page{(gpu_addr & Core::Memory::YUZU_PAGEMASK) + size};
return page <= Core::Memory::YUZU_PAGESIZE;
const std::size_t page{(gpu_addr & Core::DEVICE_PAGEMASK) + size};
return page <= Core::DEVICE_PAGESIZE;
}
bool MemoryManager::IsContinuousRange(GPUVAddr gpu_addr, std::size_t size) const {
std::optional<VAddr> old_page_addr{};
std::optional<DAddr> old_page_addr{};
bool result{true};
auto fail = [&]([[maybe_unused]] std::size_t page_index, [[maybe_unused]] std::size_t offset,
std::size_t copy_amount) {
@ -619,23 +625,23 @@ bool MemoryManager::IsContinuousRange(GPUVAddr gpu_addr, std::size_t size) const
return true;
};
auto short_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != cpu_addr_base) {
const DAddr dev_addr_base =
(static_cast<DAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != dev_addr_base) {
result = false;
return true;
}
old_page_addr = {cpu_addr_base + copy_amount};
old_page_addr = {dev_addr_base + copy_amount};
return false;
};
auto big_check = [&](std::size_t page_index, std::size_t offset, std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != cpu_addr_base) {
const DAddr dev_addr_base =
(static_cast<DAddr>(big_page_table_dev[page_index]) << cpu_page_bits) + offset;
if (old_page_addr && *old_page_addr != dev_addr_base) {
result = false;
return true;
}
old_page_addr = {cpu_addr_base + copy_amount};
old_page_addr = {dev_addr_base + copy_amount};
return false;
};
auto check_short_pages = [&](std::size_t page_index, std::size_t offset,
@ -678,11 +684,11 @@ template <bool is_gpu_address>
void MemoryManager::GetSubmappedRangeImpl(
GPUVAddr gpu_addr, std::size_t size,
boost::container::small_vector<
std::pair<std::conditional_t<is_gpu_address, GPUVAddr, VAddr>, std::size_t>, 32>& result)
std::pair<std::conditional_t<is_gpu_address, GPUVAddr, DAddr>, std::size_t>, 32>& result)
const {
std::optional<std::pair<std::conditional_t<is_gpu_address, GPUVAddr, VAddr>, std::size_t>>
std::optional<std::pair<std::conditional_t<is_gpu_address, GPUVAddr, DAddr>, std::size_t>>
last_segment{};
std::optional<VAddr> old_page_addr{};
std::optional<DAddr> old_page_addr{};
const auto split = [&last_segment, &result]([[maybe_unused]] std::size_t page_index,
[[maybe_unused]] std::size_t offset,
[[maybe_unused]] std::size_t copy_amount) {
@ -694,20 +700,20 @@ void MemoryManager::GetSubmappedRangeImpl(
const auto extend_size_big = [this, &split, &old_page_addr,
&last_segment](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(big_page_table_cpu[page_index]) << cpu_page_bits) + offset;
const DAddr dev_addr_base =
(static_cast<DAddr>(big_page_table_dev[page_index]) << cpu_page_bits) + offset;
if (old_page_addr) {
if (*old_page_addr != cpu_addr_base) {
if (*old_page_addr != dev_addr_base) {
split(0, 0, 0);
}
}
old_page_addr = {cpu_addr_base + copy_amount};
old_page_addr = {dev_addr_base + copy_amount};
if (!last_segment) {
if constexpr (is_gpu_address) {
const GPUVAddr new_base_addr = (page_index << big_page_bits) + offset;
last_segment = {new_base_addr, copy_amount};
} else {
last_segment = {cpu_addr_base, copy_amount};
last_segment = {dev_addr_base, copy_amount};
}
} else {
last_segment->second += copy_amount;
@ -716,20 +722,20 @@ void MemoryManager::GetSubmappedRangeImpl(
const auto extend_size_short = [this, &split, &old_page_addr,
&last_segment](std::size_t page_index, std::size_t offset,
std::size_t copy_amount) {
const VAddr cpu_addr_base =
(static_cast<VAddr>(page_table[page_index]) << cpu_page_bits) + offset;
const DAddr dev_addr_base =
(static_cast<DAddr>(page_table[page_index]) << cpu_page_bits) + offset;
if (old_page_addr) {
if (*old_page_addr != cpu_addr_base) {
if (*old_page_addr != dev_addr_base) {
split(0, 0, 0);
}
}
old_page_addr = {cpu_addr_base + copy_amount};
old_page_addr = {dev_addr_base + copy_amount};
if (!last_segment) {
if constexpr (is_gpu_address) {
const GPUVAddr new_base_addr = (page_index << page_bits) + offset;
last_segment = {new_base_addr, copy_amount};
} else {
last_segment = {cpu_addr_base, copy_amount};
last_segment = {dev_addr_base, copy_amount};
}
} else {
last_segment->second += copy_amount;
@ -756,9 +762,12 @@ void MemoryManager::FlushCaching() {
}
const u8* MemoryManager::GetSpan(const GPUVAddr src_addr, const std::size_t size) const {
auto cpu_addr = GpuToCpuAddress(src_addr);
if (cpu_addr) {
return memory.GetSpan(*cpu_addr, size);
if (!IsContinuousRange(src_addr, size)) {
return nullptr;
}
auto dev_addr = GpuToCpuAddress(src_addr);
if (dev_addr) {
return memory.GetSpan(*dev_addr, size);
}
return nullptr;
}
@ -767,9 +776,9 @@ u8* MemoryManager::GetSpan(const GPUVAddr src_addr, const std::size_t size) {
if (!IsContinuousRange(src_addr, size)) {
return nullptr;
}
auto cpu_addr = GpuToCpuAddress(src_addr);
if (cpu_addr) {
return memory.GetSpan(*cpu_addr, size);
auto dev_addr = GpuToCpuAddress(src_addr);
if (dev_addr) {
return memory.GetSpan(*dev_addr, size);
}
return nullptr;
}

View file

@ -15,8 +15,8 @@
#include "common/range_map.h"
#include "common/scratch_buffer.h"
#include "common/virtual_buffer.h"
#include "core/memory.h"
#include "video_core/cache_types.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/pte_kind.h"
namespace VideoCore {
@ -28,10 +28,6 @@ class InvalidationAccumulator;
}
namespace Core {
class DeviceMemory;
namespace Memory {
class Memory;
} // namespace Memory
class System;
} // namespace Core
@ -41,6 +37,9 @@ class MemoryManager final {
public:
explicit MemoryManager(Core::System& system_, u64 address_space_bits_ = 40,
u64 big_page_bits_ = 16, u64 page_bits_ = 12);
explicit MemoryManager(Core::System& system_, MaxwellDeviceMemoryManager& memory_,
u64 address_space_bits_ = 40, u64 big_page_bits_ = 16,
u64 page_bits_ = 12);
~MemoryManager();
size_t GetID() const {
@ -50,9 +49,9 @@ public:
/// Binds a renderer to the memory manager.
void BindRasterizer(VideoCore::RasterizerInterface* rasterizer);
[[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr) const;
[[nodiscard]] std::optional<DAddr> GpuToCpuAddress(GPUVAddr addr) const;
[[nodiscard]] std::optional<VAddr> GpuToCpuAddress(GPUVAddr addr, std::size_t size) const;
[[nodiscard]] std::optional<DAddr> GpuToCpuAddress(GPUVAddr addr, std::size_t size) const;
template <typename T>
[[nodiscard]] T Read(GPUVAddr addr) const;
@ -69,7 +68,7 @@ public:
if (!address) {
return {};
}
return memory.GetPointer(*address);
return memory.GetPointer<T>(*address);
}
template <typename T>
@ -110,7 +109,7 @@ public:
[[nodiscard]] bool IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
* Checks if a gpu region is mapped by a single range of cpu addresses.
* Checks if a gpu region is mapped by a single range of device addresses.
*/
[[nodiscard]] bool IsContinuousRange(GPUVAddr gpu_addr, std::size_t size) const;
@ -120,14 +119,14 @@ public:
[[nodiscard]] bool IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const;
/**
* Returns a vector with all the subranges of cpu addresses mapped beneath.
* Returns a vector with all the subranges of device addresses mapped beneath.
* if the region is continuous, a single pair will be returned. If it's unmapped, an empty
* vector will be returned;
*/
boost::container::small_vector<std::pair<GPUVAddr, std::size_t>, 32> GetSubmappedRange(
GPUVAddr gpu_addr, std::size_t size) const;
GPUVAddr Map(GPUVAddr gpu_addr, VAddr cpu_addr, std::size_t size,
GPUVAddr Map(GPUVAddr gpu_addr, DAddr dev_addr, std::size_t size,
PTEKind kind = PTEKind::INVALID, bool is_big_pages = true);
GPUVAddr MapSparse(GPUVAddr gpu_addr, std::size_t size, bool is_big_pages = true);
void Unmap(GPUVAddr gpu_addr, std::size_t size);
@ -186,12 +185,11 @@ private:
void GetSubmappedRangeImpl(
GPUVAddr gpu_addr, std::size_t size,
boost::container::small_vector<
std::pair<std::conditional_t<is_gpu_address, GPUVAddr, VAddr>, std::size_t>, 32>&
std::pair<std::conditional_t<is_gpu_address, GPUVAddr, DAddr>, std::size_t>, 32>&
result) const;
Core::System& system;
Core::Memory::Memory& memory;
Core::DeviceMemory& device_memory;
MaxwellDeviceMemoryManager& memory;
const u64 address_space_bits;
const u64 page_bits;
@ -218,11 +216,11 @@ private:
std::vector<u64> big_entries;
template <EntryType entry_type>
GPUVAddr PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size,
GPUVAddr PageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] DAddr dev_addr, size_t size,
PTEKind kind);
template <EntryType entry_type>
GPUVAddr BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] VAddr cpu_addr, size_t size,
GPUVAddr BigPageTableOp(GPUVAddr gpu_addr, [[maybe_unused]] DAddr dev_addr, size_t size,
PTEKind kind);
template <bool is_big_page>
@ -233,11 +231,11 @@ private:
Common::MultiLevelPageTable<u32> page_table;
Common::RangeMap<GPUVAddr, PTEKind> kind_map;
Common::VirtualBuffer<u32> big_page_table_cpu;
Common::VirtualBuffer<u32> big_page_table_dev;
std::vector<u64> big_page_continuous;
boost::container::small_vector<std::pair<VAddr, std::size_t>, 32> page_stash{};
boost::container::small_vector<std::pair<VAddr, std::size_t>, 32> page_stash2{};
boost::container::small_vector<std::pair<DAddr, std::size_t>, 32> page_stash{};
boost::container::small_vector<std::pair<DAddr, std::size_t>, 32> page_stash2{};
mutable std::mutex guard;

View file

@ -18,9 +18,9 @@
#include "common/assert.h"
#include "common/settings.h"
#include "core/memory.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/texture_cache/slot_vector.h"
@ -102,18 +102,19 @@ template <class QueryCache, class CachedQuery, class CounterStream, class HostCo
class QueryCacheLegacy : public VideoCommon::ChannelSetupCaches<VideoCommon::ChannelInfo> {
public:
explicit QueryCacheLegacy(VideoCore::RasterizerInterface& rasterizer_,
Core::Memory::Memory& cpu_memory_)
Tegra::MaxwellDeviceMemoryManager& device_memory_)
: rasterizer{rasterizer_},
// Use reinterpret_cast instead of static_cast as workaround for
// UBSan bug (https://github.com/llvm/llvm-project/issues/59060)
cpu_memory{cpu_memory_}, streams{{
{CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::SamplesPassed}},
{CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::PrimitivesGenerated}},
{CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::TfbPrimitivesWritten}},
}} {
device_memory{device_memory_},
streams{{
{CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::SamplesPassed}},
{CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::PrimitivesGenerated}},
{CounterStream{reinterpret_cast<QueryCache&>(*this),
VideoCore::QueryType::TfbPrimitivesWritten}},
}} {
(void)slot_async_jobs.insert(); // Null value
}
@ -322,13 +323,14 @@ private:
local_lock.unlock();
if (timestamp) {
u64 timestamp_value = *timestamp;
cpu_memory.WriteBlockUnsafe(address + sizeof(u64), &timestamp_value, sizeof(u64));
cpu_memory.WriteBlockUnsafe(address, &value, sizeof(u64));
device_memory.WriteBlockUnsafe(address + sizeof(u64), &timestamp_value,
sizeof(u64));
device_memory.WriteBlockUnsafe(address, &value, sizeof(u64));
rasterizer.InvalidateRegion(address, sizeof(u64) * 2,
VideoCommon::CacheType::NoQueryCache);
} else {
u32 small_value = static_cast<u32>(value);
cpu_memory.WriteBlockUnsafe(address, &small_value, sizeof(u32));
device_memory.WriteBlockUnsafe(address, &small_value, sizeof(u32));
rasterizer.InvalidateRegion(address, sizeof(u32),
VideoCommon::CacheType::NoQueryCache);
}
@ -342,7 +344,7 @@ private:
SlotVector<AsyncJob> slot_async_jobs;
VideoCore::RasterizerInterface& rasterizer;
Core::Memory::Memory& cpu_memory;
Tegra::MaxwellDeviceMemoryManager& device_memory;
mutable std::recursive_mutex mutex;

View file

@ -23,7 +23,7 @@ DECLARE_ENUM_FLAG_OPERATORS(QueryFlagBits)
class QueryBase {
public:
VAddr guest_address{};
DAddr guest_address{};
QueryFlagBits flags{};
u64 value{};
@ -32,7 +32,7 @@ protected:
QueryBase() = default;
// Parameterized constructor
QueryBase(VAddr address, QueryFlagBits flags_, u64 value_)
QueryBase(DAddr address, QueryFlagBits flags_, u64 value_)
: guest_address(address), flags(flags_), value{value_} {}
};

View file

@ -15,9 +15,9 @@
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/gpu.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/memory_manager.h"
#include "video_core/query_cache/bank_base.h"
#include "video_core/query_cache/query_base.h"
@ -113,9 +113,10 @@ struct QueryCacheBase<Traits>::QueryCacheBaseImpl {
using RuntimeType = typename Traits::RuntimeType;
QueryCacheBaseImpl(QueryCacheBase<Traits>* owner_, VideoCore::RasterizerInterface& rasterizer_,
Core::Memory::Memory& cpu_memory_, RuntimeType& runtime_, Tegra::GPU& gpu_)
Tegra::MaxwellDeviceMemoryManager& device_memory_, RuntimeType& runtime_,
Tegra::GPU& gpu_)
: owner{owner_}, rasterizer{rasterizer_},
cpu_memory{cpu_memory_}, runtime{runtime_}, gpu{gpu_} {
device_memory{device_memory_}, runtime{runtime_}, gpu{gpu_} {
streamer_mask = 0;
for (size_t i = 0; i < static_cast<size_t>(QueryType::MaxQueryTypes); i++) {
streamers[i] = runtime.GetStreamerInterface(static_cast<QueryType>(i));
@ -158,7 +159,7 @@ struct QueryCacheBase<Traits>::QueryCacheBaseImpl {
QueryCacheBase<Traits>* owner;
VideoCore::RasterizerInterface& rasterizer;
Core::Memory::Memory& cpu_memory;
Tegra::MaxwellDeviceMemoryManager& device_memory;
RuntimeType& runtime;
Tegra::GPU& gpu;
std::array<StreamerInterface*, static_cast<size_t>(QueryType::MaxQueryTypes)> streamers;
@ -171,10 +172,11 @@ struct QueryCacheBase<Traits>::QueryCacheBaseImpl {
template <typename Traits>
QueryCacheBase<Traits>::QueryCacheBase(Tegra::GPU& gpu_,
VideoCore::RasterizerInterface& rasterizer_,
Core::Memory::Memory& cpu_memory_, RuntimeType& runtime_)
Tegra::MaxwellDeviceMemoryManager& device_memory_,
RuntimeType& runtime_)
: cached_queries{} {
impl = std::make_unique<QueryCacheBase<Traits>::QueryCacheBaseImpl>(
this, rasterizer_, cpu_memory_, runtime_, gpu_);
this, rasterizer_, device_memory_, runtime_, gpu_);
}
template <typename Traits>
@ -240,7 +242,7 @@ void QueryCacheBase<Traits>::CounterReport(GPUVAddr addr, QueryType counter_type
if (!cpu_addr_opt) [[unlikely]] {
return;
}
VAddr cpu_addr = *cpu_addr_opt;
DAddr cpu_addr = *cpu_addr_opt;
const size_t new_query_id = streamer->WriteCounter(cpu_addr, has_timestamp, payload, subreport);
auto* query = streamer->GetQuery(new_query_id);
if (is_fence) {
@ -250,13 +252,12 @@ void QueryCacheBase<Traits>::CounterReport(GPUVAddr addr, QueryType counter_type
query_location.stream_id.Assign(static_cast<u32>(streamer_id));
query_location.query_id.Assign(static_cast<u32>(new_query_id));
const auto gen_caching_indexing = [](VAddr cur_addr) {
return std::make_pair<u64, u32>(cur_addr >> Core::Memory::YUZU_PAGEBITS,
static_cast<u32>(cur_addr & Core::Memory::YUZU_PAGEMASK));
return std::make_pair<u64, u32>(cur_addr >> Core::DEVICE_PAGEBITS,
static_cast<u32>(cur_addr & Core::DEVICE_PAGEMASK));
};
u8* pointer = impl->cpu_memory.GetPointer(cpu_addr);
u8* pointer_timestamp = impl->cpu_memory.GetPointer(cpu_addr + 8);
u8* pointer = impl->device_memory.template GetPointer<u8>(cpu_addr);
u8* pointer_timestamp = impl->device_memory.template GetPointer<u8>(cpu_addr + 8);
bool is_synced = !Settings::IsGPULevelHigh() && is_fence;
std::function<void()> operation([this, is_synced, streamer, query_base = query, query_location,
pointer, pointer_timestamp] {
if (True(query_base->flags & QueryFlagBits::IsInvalidated)) {
@ -323,8 +324,8 @@ void QueryCacheBase<Traits>::CounterReport(GPUVAddr addr, QueryType counter_type
template <typename Traits>
void QueryCacheBase<Traits>::UnregisterPending() {
const auto gen_caching_indexing = [](VAddr cur_addr) {
return std::make_pair<u64, u32>(cur_addr >> Core::Memory::YUZU_PAGEBITS,
static_cast<u32>(cur_addr & Core::Memory::YUZU_PAGEMASK));
return std::make_pair<u64, u32>(cur_addr >> Core::DEVICE_PAGEBITS,
static_cast<u32>(cur_addr & Core::DEVICE_PAGEMASK));
};
std::scoped_lock lock(cache_mutex);
for (QueryLocation loc : impl->pending_unregister) {
@ -388,7 +389,7 @@ bool QueryCacheBase<Traits>::AccelerateHostConditionalRendering() {
}
VAddr cpu_addr = *cpu_addr_opt;
std::scoped_lock lock(cache_mutex);
auto it1 = cached_queries.find(cpu_addr >> Core::Memory::YUZU_PAGEBITS);
auto it1 = cached_queries.find(cpu_addr >> Core::DEVICE_PAGEBITS);
if (it1 == cached_queries.end()) {
return VideoCommon::LookupData{
.address = cpu_addr,
@ -396,10 +397,10 @@ bool QueryCacheBase<Traits>::AccelerateHostConditionalRendering() {
};
}
auto& sub_container = it1->second;
auto it_current = sub_container.find(cpu_addr & Core::Memory::YUZU_PAGEMASK);
auto it_current = sub_container.find(cpu_addr & Core::DEVICE_PAGEMASK);
if (it_current == sub_container.end()) {
auto it_current_2 = sub_container.find((cpu_addr & Core::Memory::YUZU_PAGEMASK) + 4);
auto it_current_2 = sub_container.find((cpu_addr & Core::DEVICE_PAGEMASK) + 4);
if (it_current_2 == sub_container.end()) {
return VideoCommon::LookupData{
.address = cpu_addr,
@ -559,7 +560,7 @@ bool QueryCacheBase<Traits>::SemiFlushQueryDirty(QueryCacheBase<Traits>::QueryLo
}
if (True(query_base->flags & QueryFlagBits::IsFinalValueSynced) &&
False(query_base->flags & QueryFlagBits::IsGuestSynced)) {
auto* ptr = impl->cpu_memory.GetPointer(query_base->guest_address);
auto* ptr = impl->device_memory.template GetPointer<u8>(query_base->guest_address);
if (True(query_base->flags & QueryFlagBits::HasTimestamp)) {
std::memcpy(ptr, &query_base->value, sizeof(query_base->value));
return false;

View file

@ -13,15 +13,11 @@
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
#include "core/memory.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/query_cache/query_base.h"
#include "video_core/query_cache/types.h"
namespace Core::Memory {
class Memory;
}
namespace VideoCore {
class RasterizerInterface;
}
@ -53,7 +49,8 @@ public:
};
explicit QueryCacheBase(Tegra::GPU& gpu, VideoCore::RasterizerInterface& rasterizer_,
Core::Memory::Memory& cpu_memory_, RuntimeType& runtime_);
Tegra::MaxwellDeviceMemoryManager& device_memory_,
RuntimeType& runtime_);
~QueryCacheBase();
@ -125,10 +122,10 @@ protected:
const u64 addr_begin = addr;
const u64 addr_end = addr_begin + size;
const u64 page_end = addr_end >> Core::Memory::YUZU_PAGEBITS;
const u64 page_end = addr_end >> Core::DEVICE_PAGEBITS;
std::scoped_lock lock(cache_mutex);
for (u64 page = addr_begin >> Core::Memory::YUZU_PAGEBITS; page <= page_end; ++page) {
const u64 page_start = page << Core::Memory::YUZU_PAGEBITS;
for (u64 page = addr_begin >> Core::DEVICE_PAGEBITS; page <= page_end; ++page) {
const u64 page_start = page << Core::DEVICE_PAGEBITS;
const auto in_range = [page_start, addr_begin, addr_end](const u32 query_location) {
const u64 cache_begin = page_start + query_location;
const u64 cache_end = cache_begin + sizeof(u32);

View file

@ -86,35 +86,35 @@ public:
virtual void FlushAll() = 0;
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
virtual void FlushRegion(VAddr addr, u64 size,
virtual void FlushRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) = 0;
/// Check if the the specified memory area requires flushing to CPU Memory.
virtual bool MustFlushRegion(VAddr addr, u64 size,
virtual bool MustFlushRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) = 0;
virtual RasterizerDownloadArea GetFlushArea(VAddr addr, u64 size) = 0;
virtual RasterizerDownloadArea GetFlushArea(DAddr addr, u64 size) = 0;
/// Notify rasterizer that any caches of the specified region should be invalidated
virtual void InvalidateRegion(VAddr addr, u64 size,
virtual void InvalidateRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) = 0;
virtual void InnerInvalidation(std::span<const std::pair<VAddr, std::size_t>> sequences) {
virtual void InnerInvalidation(std::span<const std::pair<DAddr, std::size_t>> sequences) {
for (const auto& [cpu_addr, size] : sequences) {
InvalidateRegion(cpu_addr, size);
}
}
/// Notify rasterizer that any caches of the specified region are desync with guest
virtual void OnCacheInvalidation(VAddr addr, u64 size) = 0;
virtual void OnCacheInvalidation(PAddr addr, u64 size) = 0;
virtual bool OnCPUWrite(VAddr addr, u64 size) = 0;
virtual bool OnCPUWrite(PAddr addr, u64 size) = 0;
/// Sync memory between guest and host.
virtual void InvalidateGPUCache() = 0;
/// Unmap memory range
virtual void UnmapMemory(VAddr addr, u64 size) = 0;
virtual void UnmapMemory(DAddr addr, u64 size) = 0;
/// Remap GPU memory range. This means underneath backing memory changed
virtual void ModifyGPUMemory(size_t as_id, GPUVAddr addr, u64 size) = 0;
@ -122,7 +122,7 @@ public:
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
/// and invalidated
virtual void FlushAndInvalidateRegion(
VAddr addr, u64 size, VideoCommon::CacheType which = VideoCommon::CacheType::All) = 0;
DAddr addr, u64 size, VideoCommon::CacheType which = VideoCommon::CacheType::All) = 0;
/// Notify the host renderer to wait for previous primitive and compute operations.
virtual void WaitForIdle() = 0;
@ -157,13 +157,10 @@ public:
/// Attempt to use a faster method to display the framebuffer to screen
[[nodiscard]] virtual bool AccelerateDisplay(const Tegra::FramebufferConfig& config,
VAddr framebuffer_addr, u32 pixel_stride) {
DAddr framebuffer_addr, u32 pixel_stride) {
return false;
}
/// Increase/decrease the number of object in pages touching the specified region
virtual void UpdatePagesCachedCount(VAddr addr, u64 size, int delta) {}
/// Initialize disk cached resources for the game being emulated
virtual void LoadDiskResources(u64 title_id, std::stop_token stop_loading,
const DiskResourceLoadCallback& callback) {}

View file

@ -2,7 +2,6 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/alignment.h"
#include "core/memory.h"
#include "video_core/control/channel_state.h"
#include "video_core/host1x/host1x.h"
#include "video_core/memory_manager.h"
@ -19,8 +18,7 @@ bool AccelerateDMA::BufferClear(GPUVAddr src_address, u64 amount, u32 value) {
return true;
}
RasterizerNull::RasterizerNull(Core::Memory::Memory& cpu_memory_, Tegra::GPU& gpu)
: RasterizerAccelerated(cpu_memory_), m_gpu{gpu} {}
RasterizerNull::RasterizerNull(Tegra::GPU& gpu) : m_gpu{gpu} {}
RasterizerNull::~RasterizerNull() = default;
void RasterizerNull::Draw(bool is_indexed, u32 instance_count) {}
@ -45,25 +43,25 @@ void RasterizerNull::BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr
u32 size) {}
void RasterizerNull::DisableGraphicsUniformBuffer(size_t stage, u32 index) {}
void RasterizerNull::FlushAll() {}
void RasterizerNull::FlushRegion(VAddr addr, u64 size, VideoCommon::CacheType) {}
bool RasterizerNull::MustFlushRegion(VAddr addr, u64 size, VideoCommon::CacheType) {
void RasterizerNull::FlushRegion(DAddr addr, u64 size, VideoCommon::CacheType) {}
bool RasterizerNull::MustFlushRegion(DAddr addr, u64 size, VideoCommon::CacheType) {
return false;
}
void RasterizerNull::InvalidateRegion(VAddr addr, u64 size, VideoCommon::CacheType) {}
bool RasterizerNull::OnCPUWrite(VAddr addr, u64 size) {
void RasterizerNull::InvalidateRegion(DAddr addr, u64 size, VideoCommon::CacheType) {}
bool RasterizerNull::OnCPUWrite(PAddr addr, u64 size) {
return false;
}
void RasterizerNull::OnCacheInvalidation(VAddr addr, u64 size) {}
VideoCore::RasterizerDownloadArea RasterizerNull::GetFlushArea(VAddr addr, u64 size) {
void RasterizerNull::OnCacheInvalidation(PAddr addr, u64 size) {}
VideoCore::RasterizerDownloadArea RasterizerNull::GetFlushArea(PAddr addr, u64 size) {
VideoCore::RasterizerDownloadArea new_area{
.start_address = Common::AlignDown(addr, Core::Memory::YUZU_PAGESIZE),
.end_address = Common::AlignUp(addr + size, Core::Memory::YUZU_PAGESIZE),
.start_address = Common::AlignDown(addr, Core::DEVICE_PAGESIZE),
.end_address = Common::AlignUp(addr + size, Core::DEVICE_PAGESIZE),
.preemtive = true,
};
return new_area;
}
void RasterizerNull::InvalidateGPUCache() {}
void RasterizerNull::UnmapMemory(VAddr addr, u64 size) {}
void RasterizerNull::UnmapMemory(DAddr addr, u64 size) {}
void RasterizerNull::ModifyGPUMemory(size_t as_id, GPUVAddr addr, u64 size) {}
void RasterizerNull::SignalFence(std::function<void()>&& func) {
func();
@ -78,7 +76,7 @@ void RasterizerNull::SignalSyncPoint(u32 value) {
}
void RasterizerNull::SignalReference() {}
void RasterizerNull::ReleaseFences(bool) {}
void RasterizerNull::FlushAndInvalidateRegion(VAddr addr, u64 size, VideoCommon::CacheType) {}
void RasterizerNull::FlushAndInvalidateRegion(DAddr addr, u64 size, VideoCommon::CacheType) {}
void RasterizerNull::WaitForIdle() {}
void RasterizerNull::FragmentBarrier() {}
void RasterizerNull::TiledCacheBarrier() {}
@ -95,7 +93,7 @@ bool RasterizerNull::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Surfac
void RasterizerNull::AccelerateInlineToMemory(GPUVAddr address, size_t copy_size,
std::span<const u8> memory) {}
bool RasterizerNull::AccelerateDisplay(const Tegra::FramebufferConfig& config,
VAddr framebuffer_addr, u32 pixel_stride) {
DAddr framebuffer_addr, u32 pixel_stride) {
return true;
}
void RasterizerNull::LoadDiskResources(u64 title_id, std::stop_token stop_loading,

View file

@ -6,7 +6,6 @@
#include "common/common_types.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/rasterizer_accelerated.h"
#include "video_core/rasterizer_interface.h"
namespace Core {
@ -32,10 +31,10 @@ public:
}
};
class RasterizerNull final : public VideoCore::RasterizerAccelerated,
class RasterizerNull final : public VideoCore::RasterizerInterface,
protected VideoCommon::ChannelSetupCaches<VideoCommon::ChannelInfo> {
public:
explicit RasterizerNull(Core::Memory::Memory& cpu_memory, Tegra::GPU& gpu);
explicit RasterizerNull(Tegra::GPU& gpu);
~RasterizerNull() override;
void Draw(bool is_indexed, u32 instance_count) override;
@ -48,17 +47,17 @@ public:
void BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr, u32 size) override;
void DisableGraphicsUniformBuffer(size_t stage, u32 index) override;
void FlushAll() override;
void FlushRegion(VAddr addr, u64 size,
void FlushRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
bool MustFlushRegion(VAddr addr, u64 size,
bool MustFlushRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
void InvalidateRegion(VAddr addr, u64 size,
void InvalidateRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
void OnCacheInvalidation(VAddr addr, u64 size) override;
bool OnCPUWrite(VAddr addr, u64 size) override;
VideoCore::RasterizerDownloadArea GetFlushArea(VAddr addr, u64 size) override;
void OnCacheInvalidation(DAddr addr, u64 size) override;
bool OnCPUWrite(DAddr addr, u64 size) override;
VideoCore::RasterizerDownloadArea GetFlushArea(DAddr addr, u64 size) override;
void InvalidateGPUCache() override;
void UnmapMemory(VAddr addr, u64 size) override;
void UnmapMemory(DAddr addr, u64 size) override;
void ModifyGPUMemory(size_t as_id, GPUVAddr addr, u64 size) override;
void SignalFence(std::function<void()>&& func) override;
void SyncOperation(std::function<void()>&& func) override;
@ -66,7 +65,7 @@ public:
void SignalReference() override;
void ReleaseFences(bool force) override;
void FlushAndInvalidateRegion(
VAddr addr, u64 size, VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
DAddr addr, u64 size, VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
void WaitForIdle() override;
void FragmentBarrier() override;
void TiledCacheBarrier() override;
@ -78,7 +77,7 @@ public:
Tegra::Engines::AccelerateDMAInterface& AccessAccelerateDMA() override;
void AccelerateInlineToMemory(GPUVAddr address, size_t copy_size,
std::span<const u8> memory) override;
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr,
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, DAddr framebuffer_addr,
u32 pixel_stride) override;
void LoadDiskResources(u64 title_id, std::stop_token stop_loading,
const VideoCore::DiskResourceLoadCallback& callback) override;

View file

@ -7,10 +7,9 @@
namespace Null {
RendererNull::RendererNull(Core::Frontend::EmuWindow& emu_window, Core::Memory::Memory& cpu_memory,
Tegra::GPU& gpu,
RendererNull::RendererNull(Core::Frontend::EmuWindow& emu_window, Tegra::GPU& gpu,
std::unique_ptr<Core::Frontend::GraphicsContext> context_)
: RendererBase(emu_window, std::move(context_)), m_gpu(gpu), m_rasterizer(cpu_memory, gpu) {}
: RendererBase(emu_window, std::move(context_)), m_gpu(gpu), m_rasterizer(gpu) {}
RendererNull::~RendererNull() = default;

View file

@ -13,8 +13,7 @@ namespace Null {
class RendererNull final : public VideoCore::RendererBase {
public:
explicit RendererNull(Core::Frontend::EmuWindow& emu_window, Core::Memory::Memory& cpu_memory,
Tegra::GPU& gpu,
explicit RendererNull(Core::Frontend::EmuWindow& emu_window, Tegra::GPU& gpu,
std::unique_ptr<Core::Frontend::GraphicsContext> context);
~RendererNull() override;

View file

@ -47,11 +47,10 @@ constexpr std::array PROGRAM_LUT{
} // Anonymous namespace
Buffer::Buffer(BufferCacheRuntime&, VideoCommon::NullBufferParams null_params)
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(null_params) {}
: VideoCommon::BufferBase(null_params) {}
Buffer::Buffer(BufferCacheRuntime& runtime, VideoCore::RasterizerInterface& rasterizer_,
VAddr cpu_addr_, u64 size_bytes_)
: VideoCommon::BufferBase<VideoCore::RasterizerInterface>(rasterizer_, cpu_addr_, size_bytes_) {
Buffer::Buffer(BufferCacheRuntime& runtime, DAddr cpu_addr_, u64 size_bytes_)
: VideoCommon::BufferBase(cpu_addr_, size_bytes_) {
buffer.Create();
if (runtime.device.HasDebuggingToolAttached()) {
const std::string name = fmt::format("Buffer 0x{:x}", CpuAddr());

View file

@ -10,7 +10,6 @@
#include "common/common_types.h"
#include "video_core/buffer_cache/buffer_cache_base.h"
#include "video_core/buffer_cache/memory_tracker_base.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/gl_device.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/renderer_opengl/gl_staging_buffer_pool.h"
@ -19,10 +18,9 @@ namespace OpenGL {
class BufferCacheRuntime;
class Buffer : public VideoCommon::BufferBase<VideoCore::RasterizerInterface> {
class Buffer : public VideoCommon::BufferBase {
public:
explicit Buffer(BufferCacheRuntime&, VideoCore::RasterizerInterface& rasterizer, VAddr cpu_addr,
u64 size_bytes);
explicit Buffer(BufferCacheRuntime&, DAddr cpu_addr, u64 size_bytes);
explicit Buffer(BufferCacheRuntime&, VideoCommon::NullBufferParams);
void ImmediateUpload(size_t offset, std::span<const u8> data) noexcept;
@ -244,7 +242,7 @@ struct BufferCacheParams {
using Runtime = OpenGL::BufferCacheRuntime;
using Buffer = OpenGL::Buffer;
using Async_Buffer = OpenGL::StagingBufferMap;
using MemoryTracker = VideoCommon::MemoryTrackerBase<VideoCore::RasterizerInterface>;
using MemoryTracker = VideoCommon::MemoryTrackerBase<Tegra::MaxwellDeviceMemoryManager>;
static constexpr bool IS_OPENGL = true;
static constexpr bool HAS_PERSISTENT_UNIFORM_BUFFER_BINDINGS = true;

View file

@ -35,8 +35,9 @@ constexpr GLenum GetTarget(VideoCore::QueryType type) {
} // Anonymous namespace
QueryCache::QueryCache(RasterizerOpenGL& rasterizer_, Core::Memory::Memory& cpu_memory_)
: QueryCacheLegacy(rasterizer_, cpu_memory_), gl_rasterizer{rasterizer_} {
QueryCache::QueryCache(RasterizerOpenGL& rasterizer_,
Tegra::MaxwellDeviceMemoryManager& device_memory_)
: QueryCacheLegacy(rasterizer_, device_memory_), gl_rasterizer{rasterizer_} {
EnableCounters();
}

View file

@ -8,6 +8,7 @@
#include <vector>
#include "common/common_types.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/query_cache.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/gl_resource_manager.h"
@ -28,7 +29,8 @@ using CounterStream = VideoCommon::CounterStreamBase<QueryCache, HostCounter>;
class QueryCache final
: public VideoCommon::QueryCacheLegacy<QueryCache, CachedQuery, CounterStream, HostCounter> {
public:
explicit QueryCache(RasterizerOpenGL& rasterizer_, Core::Memory::Memory& cpu_memory_);
explicit QueryCache(RasterizerOpenGL& rasterizer_,
Tegra::MaxwellDeviceMemoryManager& device_memory_);
~QueryCache();
OGLQuery AllocateQuery(VideoCore::QueryType type);

View file

@ -70,18 +70,18 @@ std::optional<VideoCore::QueryType> MaxwellToVideoCoreQuery(VideoCommon::QueryTy
} // Anonymous namespace
RasterizerOpenGL::RasterizerOpenGL(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_,
Core::Memory::Memory& cpu_memory_, const Device& device_,
ScreenInfo& screen_info_, ProgramManager& program_manager_,
StateTracker& state_tracker_)
: RasterizerAccelerated(cpu_memory_), gpu(gpu_), device(device_), screen_info(screen_info_),
Tegra::MaxwellDeviceMemoryManager& device_memory_,
const Device& device_, ScreenInfo& screen_info_,
ProgramManager& program_manager_, StateTracker& state_tracker_)
: gpu(gpu_), device_memory(device_memory_), device(device_), screen_info(screen_info_),
program_manager(program_manager_), state_tracker(state_tracker_),
texture_cache_runtime(device, program_manager, state_tracker, staging_buffer_pool),
texture_cache(texture_cache_runtime, *this),
texture_cache(texture_cache_runtime, device_memory_),
buffer_cache_runtime(device, staging_buffer_pool),
buffer_cache(*this, cpu_memory_, buffer_cache_runtime),
shader_cache(*this, emu_window_, device, texture_cache, buffer_cache, program_manager,
state_tracker, gpu.ShaderNotify()),
query_cache(*this, cpu_memory_), accelerate_dma(buffer_cache, texture_cache),
buffer_cache(device_memory_, buffer_cache_runtime),
shader_cache(device_memory_, emu_window_, device, texture_cache, buffer_cache,
program_manager, state_tracker, gpu.ShaderNotify()),
query_cache(*this, device_memory_), accelerate_dma(buffer_cache, texture_cache),
fence_manager(*this, gpu, texture_cache, buffer_cache, query_cache),
blit_image(program_manager_) {}
@ -475,7 +475,7 @@ void RasterizerOpenGL::DisableGraphicsUniformBuffer(size_t stage, u32 index) {
void RasterizerOpenGL::FlushAll() {}
void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size, VideoCommon::CacheType which) {
void RasterizerOpenGL::FlushRegion(DAddr addr, u64 size, VideoCommon::CacheType which) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
if (addr == 0 || size == 0) {
return;
@ -493,7 +493,7 @@ void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size, VideoCommon::CacheType
}
}
bool RasterizerOpenGL::MustFlushRegion(VAddr addr, u64 size, VideoCommon::CacheType which) {
bool RasterizerOpenGL::MustFlushRegion(DAddr addr, u64 size, VideoCommon::CacheType which) {
if ((True(which & VideoCommon::CacheType::BufferCache))) {
std::scoped_lock lock{buffer_cache.mutex};
if (buffer_cache.IsRegionGpuModified(addr, size)) {
@ -510,7 +510,7 @@ bool RasterizerOpenGL::MustFlushRegion(VAddr addr, u64 size, VideoCommon::CacheT
return false;
}
VideoCore::RasterizerDownloadArea RasterizerOpenGL::GetFlushArea(VAddr addr, u64 size) {
VideoCore::RasterizerDownloadArea RasterizerOpenGL::GetFlushArea(DAddr addr, u64 size) {
{
std::scoped_lock lock{texture_cache.mutex};
auto area = texture_cache.GetFlushArea(addr, size);
@ -526,14 +526,14 @@ VideoCore::RasterizerDownloadArea RasterizerOpenGL::GetFlushArea(VAddr addr, u64
}
}
VideoCore::RasterizerDownloadArea new_area{
.start_address = Common::AlignDown(addr, Core::Memory::YUZU_PAGESIZE),
.end_address = Common::AlignUp(addr + size, Core::Memory::YUZU_PAGESIZE),
.start_address = Common::AlignDown(addr, Core::DEVICE_PAGESIZE),
.end_address = Common::AlignUp(addr + size, Core::DEVICE_PAGESIZE),
.preemtive = true,
};
return new_area;
}
void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size, VideoCommon::CacheType which) {
void RasterizerOpenGL::InvalidateRegion(DAddr addr, u64 size, VideoCommon::CacheType which) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
if (addr == 0 || size == 0) {
return;
@ -554,7 +554,7 @@ void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size, VideoCommon::Cache
}
}
bool RasterizerOpenGL::OnCPUWrite(VAddr addr, u64 size) {
bool RasterizerOpenGL::OnCPUWrite(DAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
if (addr == 0 || size == 0) {
return false;
@ -576,8 +576,9 @@ bool RasterizerOpenGL::OnCPUWrite(VAddr addr, u64 size) {
return false;
}
void RasterizerOpenGL::OnCacheInvalidation(VAddr addr, u64 size) {
void RasterizerOpenGL::OnCacheInvalidation(DAddr addr, u64 size) {
MICROPROFILE_SCOPE(OpenGL_CacheManagement);
if (addr == 0 || size == 0) {
return;
}
@ -596,7 +597,7 @@ void RasterizerOpenGL::InvalidateGPUCache() {
gpu.InvalidateGPUCache();
}
void RasterizerOpenGL::UnmapMemory(VAddr addr, u64 size) {
void RasterizerOpenGL::UnmapMemory(DAddr addr, u64 size) {
{
std::scoped_lock lock{texture_cache.mutex};
texture_cache.UnmapMemory(addr, size);
@ -635,7 +636,7 @@ void RasterizerOpenGL::ReleaseFences(bool force) {
fence_manager.WaitPendingFences(force);
}
void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size,
void RasterizerOpenGL::FlushAndInvalidateRegion(DAddr addr, u64 size,
VideoCommon::CacheType which) {
if (Settings::IsGPULevelExtreme()) {
FlushRegion(addr, size, which);
@ -739,7 +740,7 @@ void RasterizerOpenGL::AccelerateInlineToMemory(GPUVAddr address, size_t copy_si
}
bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
VAddr framebuffer_addr, u32 pixel_stride) {
DAddr framebuffer_addr, u32 pixel_stride) {
if (framebuffer_addr == 0) {
return false;
}

View file

@ -14,7 +14,6 @@
#include "common/common_types.h"
#include "video_core/control/channel_state_cache.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/rasterizer_accelerated.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_opengl/blit_image.h"
#include "video_core/renderer_opengl/gl_buffer_cache.h"
@ -72,13 +71,13 @@ private:
TextureCache& texture_cache;
};
class RasterizerOpenGL : public VideoCore::RasterizerAccelerated,
class RasterizerOpenGL : public VideoCore::RasterizerInterface,
protected VideoCommon::ChannelSetupCaches<VideoCommon::ChannelInfo> {
public:
explicit RasterizerOpenGL(Core::Frontend::EmuWindow& emu_window_, Tegra::GPU& gpu_,
Core::Memory::Memory& cpu_memory_, const Device& device_,
ScreenInfo& screen_info_, ProgramManager& program_manager_,
StateTracker& state_tracker_);
Tegra::MaxwellDeviceMemoryManager& device_memory_,
const Device& device_, ScreenInfo& screen_info_,
ProgramManager& program_manager_, StateTracker& state_tracker_);
~RasterizerOpenGL() override;
void Draw(bool is_indexed, u32 instance_count) override;
@ -92,17 +91,17 @@ public:
void BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr, u32 size) override;
void DisableGraphicsUniformBuffer(size_t stage, u32 index) override;
void FlushAll() override;
void FlushRegion(VAddr addr, u64 size,
void FlushRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
bool MustFlushRegion(VAddr addr, u64 size,
bool MustFlushRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
VideoCore::RasterizerDownloadArea GetFlushArea(VAddr addr, u64 size) override;
void InvalidateRegion(VAddr addr, u64 size,
VideoCore::RasterizerDownloadArea GetFlushArea(PAddr addr, u64 size) override;
void InvalidateRegion(DAddr addr, u64 size,
VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
void OnCacheInvalidation(VAddr addr, u64 size) override;
bool OnCPUWrite(VAddr addr, u64 size) override;
void OnCacheInvalidation(PAddr addr, u64 size) override;
bool OnCPUWrite(PAddr addr, u64 size) override;
void InvalidateGPUCache() override;
void UnmapMemory(VAddr addr, u64 size) override;
void UnmapMemory(DAddr addr, u64 size) override;
void ModifyGPUMemory(size_t as_id, GPUVAddr addr, u64 size) override;
void SignalFence(std::function<void()>&& func) override;
void SyncOperation(std::function<void()>&& func) override;
@ -110,7 +109,7 @@ public:
void SignalReference() override;
void ReleaseFences(bool force = true) override;
void FlushAndInvalidateRegion(
VAddr addr, u64 size, VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
DAddr addr, u64 size, VideoCommon::CacheType which = VideoCommon::CacheType::All) override;
void WaitForIdle() override;
void FragmentBarrier() override;
void TiledCacheBarrier() override;
@ -123,7 +122,7 @@ public:
Tegra::Engines::AccelerateDMAInterface& AccessAccelerateDMA() override;
void AccelerateInlineToMemory(GPUVAddr address, size_t copy_size,
std::span<const u8> memory) override;
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr,
bool AccelerateDisplay(const Tegra::FramebufferConfig& config, DAddr framebuffer_addr,
u32 pixel_stride) override;
void LoadDiskResources(u64 title_id, std::stop_token stop_loading,
const VideoCore::DiskResourceLoadCallback& callback) override;
@ -235,6 +234,7 @@ private:
VideoCommon::QueryPropertiesFlags flags, u32 payload, u32 subreport);
Tegra::GPU& gpu;
Tegra::MaxwellDeviceMemoryManager& device_memory;
const Device& device;
ScreenInfo& screen_info;

View file

@ -168,11 +168,12 @@ void SetXfbState(VideoCommon::TransformFeedbackState& state, const Maxwell& regs
}
} // Anonymous namespace
ShaderCache::ShaderCache(RasterizerOpenGL& rasterizer_, Core::Frontend::EmuWindow& emu_window_,
const Device& device_, TextureCache& texture_cache_,
BufferCache& buffer_cache_, ProgramManager& program_manager_,
StateTracker& state_tracker_, VideoCore::ShaderNotify& shader_notify_)
: VideoCommon::ShaderCache{rasterizer_}, emu_window{emu_window_}, device{device_},
ShaderCache::ShaderCache(Tegra::MaxwellDeviceMemoryManager& device_memory_,
Core::Frontend::EmuWindow& emu_window_, const Device& device_,
TextureCache& texture_cache_, BufferCache& buffer_cache_,
ProgramManager& program_manager_, StateTracker& state_tracker_,
VideoCore::ShaderNotify& shader_notify_)
: VideoCommon::ShaderCache{device_memory_}, emu_window{emu_window_}, device{device_},
texture_cache{texture_cache_}, buffer_cache{buffer_cache_}, program_manager{program_manager_},
state_tracker{state_tracker_}, shader_notify{shader_notify_},
use_asynchronous_shaders{device.UseAsynchronousShaders()},

View file

@ -17,7 +17,7 @@
namespace Tegra {
class MemoryManager;
}
} // namespace Tegra
namespace OpenGL {
@ -28,10 +28,11 @@ using ShaderWorker = Common::StatefulThreadWorker<ShaderContext::Context>;
class ShaderCache : public VideoCommon::ShaderCache {
public:
explicit ShaderCache(RasterizerOpenGL& rasterizer_, Core::Frontend::EmuWindow& emu_window_,
const Device& device_, TextureCache& texture_cache_,
BufferCache& buffer_cache_, ProgramManager& program_manager_,
StateTracker& state_tracker_, VideoCore::ShaderNotify& shader_notify_);
explicit ShaderCache(Tegra::MaxwellDeviceMemoryManager& device_memory_,
Core::Frontend::EmuWindow& emu_window_, const Device& device_,
TextureCache& texture_cache_, BufferCache& buffer_cache_,
ProgramManager& program_manager_, StateTracker& state_tracker_,
VideoCore::ShaderNotify& shader_notify_);
~ShaderCache();
void LoadDiskResources(u64 title_id, std::stop_token stop_loading,

View file

@ -15,7 +15,6 @@
#include "common/telemetry.h"
#include "core/core_timing.h"
#include "core/frontend/emu_window.h"
#include "core/memory.h"
#include "core/telemetry_session.h"
#include "video_core/host_shaders/ffx_a_h.h"
#include "video_core/host_shaders/ffx_fsr1_h.h"
@ -144,12 +143,13 @@ void APIENTRY DebugHandler(GLenum source, GLenum type, GLuint id, GLenum severit
RendererOpenGL::RendererOpenGL(Core::TelemetrySession& telemetry_session_,
Core::Frontend::EmuWindow& emu_window_,
Core::Memory::Memory& cpu_memory_, Tegra::GPU& gpu_,
Tegra::MaxwellDeviceMemoryManager& device_memory_, Tegra::GPU& gpu_,
std::unique_ptr<Core::Frontend::GraphicsContext> context_)
: RendererBase{emu_window_, std::move(context_)}, telemetry_session{telemetry_session_},
emu_window{emu_window_}, cpu_memory{cpu_memory_}, gpu{gpu_}, device{emu_window_},
emu_window{emu_window_}, device_memory{device_memory_}, gpu{gpu_}, device{emu_window_},
state_tracker{}, program_manager{device},
rasterizer(emu_window, gpu, cpu_memory, device, screen_info, program_manager, state_tracker) {
rasterizer(emu_window, gpu, device_memory, device, screen_info, program_manager,
state_tracker) {
if (Settings::values.renderer_debug && GLAD_GL_KHR_debug) {
glEnable(GL_DEBUG_OUTPUT);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS);
@ -242,7 +242,7 @@ void RendererOpenGL::LoadFBToScreenInfo(const Tegra::FramebufferConfig& framebuf
const u32 bytes_per_pixel{VideoCore::Surface::BytesPerBlock(pixel_format)};
const u64 size_in_bytes{Tegra::Texture::CalculateSize(
true, bytes_per_pixel, framebuffer.stride, framebuffer.height, 1, block_height_log2, 0)};
const u8* const host_ptr{cpu_memory.GetPointer(framebuffer_addr)};
const u8* const host_ptr{device_memory.GetPointer<u8>(framebuffer_addr)};
const std::span<const u8> input_data(host_ptr, size_in_bytes);
Tegra::Texture::UnswizzleTexture(gl_framebuffer_data, input_data, bytes_per_pixel,
framebuffer.width, framebuffer.height, 1, block_height_log2,

View file

@ -61,7 +61,7 @@ class RendererOpenGL final : public VideoCore::RendererBase {
public:
explicit RendererOpenGL(Core::TelemetrySession& telemetry_session_,
Core::Frontend::EmuWindow& emu_window_,
Core::Memory::Memory& cpu_memory_, Tegra::GPU& gpu_,
Tegra::MaxwellDeviceMemoryManager& device_memory_, Tegra::GPU& gpu_,
std::unique_ptr<Core::Frontend::GraphicsContext> context_);
~RendererOpenGL() override;
@ -101,7 +101,7 @@ private:
Core::TelemetrySession& telemetry_session;
Core::Frontend::EmuWindow& emu_window;
Core::Memory::Memory& cpu_memory;
Tegra::MaxwellDeviceMemoryManager& device_memory;
Tegra::GPU& gpu;
Device device;

Some files were not shown because too many files have changed in this diff Show more