rpcs3/rpcs3/Emu/Cell/lv2/sys_event_flag.cpp
2023-02-15 08:58:02 +01:00

541 lines
9.6 KiB
C++

#include "stdafx.h"
#include "sys_event_flag.h"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include <algorithm>
#include "util/asm.hpp"
LOG_CHANNEL(sys_event_flag);
lv2_event_flag::lv2_event_flag(utils::serial& ar)
: protocol(ar)
, key(ar)
, type(ar)
, name(ar)
{
ar(pattern);
}
std::shared_ptr<void> lv2_event_flag::load(utils::serial& ar)
{
auto eflag = std::make_shared<lv2_event_flag>(ar);
return lv2_obj::load(eflag->key, eflag);
}
void lv2_event_flag::save(utils::serial& ar)
{
ar(protocol, key, type, name, pattern);
}
error_code sys_event_flag_create(ppu_thread& ppu, vm::ptr<u32> id, vm::ptr<sys_event_flag_attribute_t> attr, u64 init)
{
ppu.state += cpu_flag::wait;
sys_event_flag.warning("sys_event_flag_create(id=*0x%x, attr=*0x%x, init=0x%llx)", id, attr, init);
if (!id || !attr)
{
return CELL_EFAULT;
}
const auto _attr = *attr;
const u32 protocol = _attr.protocol;
if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY)
{
sys_event_flag.error("sys_event_flag_create(): unknown protocol (0x%x)", protocol);
return CELL_EINVAL;
}
const u32 type = _attr.type;
if (type != SYS_SYNC_WAITER_SINGLE && type != SYS_SYNC_WAITER_MULTIPLE)
{
sys_event_flag.error("sys_event_flag_create(): unknown type (0x%x)", type);
return CELL_EINVAL;
}
const u64 ipc_key = lv2_obj::get_key(_attr);
if (const auto error = lv2_obj::create<lv2_event_flag>(_attr.pshared, ipc_key, _attr.flags, [&]
{
return std::make_shared<lv2_event_flag>(
_attr.protocol,
ipc_key,
_attr.type,
_attr.name_u64,
init);
}))
{
return error;
}
ppu.check_state();
*id = idm::last_id();
return CELL_OK;
}
error_code sys_event_flag_destroy(ppu_thread& ppu, u32 id)
{
ppu.state += cpu_flag::wait;
sys_event_flag.warning("sys_event_flag_destroy(id=0x%x)", id);
const auto flag = idm::withdraw<lv2_obj, lv2_event_flag>(id, [&](lv2_event_flag& flag) -> CellError
{
if (flag.sq)
{
return CELL_EBUSY;
}
lv2_obj::on_id_destroy(flag, flag.key);
return {};
});
if (!flag)
{
return CELL_ESRCH;
}
if (flag.ret)
{
return flag.ret;
}
return CELL_OK;
}
error_code sys_event_flag_wait(ppu_thread& ppu, u32 id, u64 bitptn, u32 mode, vm::ptr<u64> result, u64 timeout)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_wait(id=0x%x, bitptn=0x%llx, mode=0x%x, result=*0x%x, timeout=0x%llx)", id, bitptn, mode, result, timeout);
// Fix function arguments for external access
ppu.gpr[3] = -1;
ppu.gpr[4] = bitptn;
ppu.gpr[5] = mode;
ppu.gpr[6] = 0;
// Always set result
struct store_result
{
vm::ptr<u64> ptr;
u64 val = 0;
~store_result() noexcept
{
if (ptr)
{
cpu_thread::get_current()->check_state();
*ptr = val;
}
}
} store{result};
if (!lv2_event_flag::check_mode(mode))
{
sys_event_flag.error("sys_event_flag_wait(): unknown mode (0x%x)", mode);
return CELL_EINVAL;
}
const auto flag = idm::get<lv2_obj, lv2_event_flag>(id, [&, notify = lv2_obj::notify_all_t()](lv2_event_flag& flag) -> CellError
{
if (flag.pattern.fetch_op([&](u64& pat)
{
return lv2_event_flag::check_pattern(pat, bitptn, mode, &ppu.gpr[6]);
}).second)
{
// TODO: is it possible to return EPERM in this case?
return {};
}
lv2_obj::prepare_for_sleep(ppu);
std::lock_guard lock(flag.mutex);
if (flag.pattern.fetch_op([&](u64& pat)
{
return lv2_event_flag::check_pattern(pat, bitptn, mode, &ppu.gpr[6]);
}).second)
{
return {};
}
if (flag.type == SYS_SYNC_WAITER_SINGLE && flag.sq)
{
return CELL_EPERM;
}
flag.sleep(ppu, timeout);
lv2_obj::emplace(flag.sq, &ppu);
return CELL_EBUSY;
});
if (!flag)
{
return CELL_ESRCH;
}
if (flag.ret)
{
if (flag.ret != CELL_EBUSY)
{
return flag.ret;
}
}
else
{
store.val = ppu.gpr[6];
return CELL_OK;
}
while (auto state = +ppu.state)
{
if (state & cpu_flag::signal && ppu.state.test_and_reset(cpu_flag::signal))
{
break;
}
if (is_stopped(state))
{
std::lock_guard lock(flag->mutex);
for (auto cpu = +flag->sq; cpu; cpu = cpu->next_cpu)
{
if (cpu == &ppu)
{
ppu.state += cpu_flag::again;
return {};
}
}
break;
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++)
{
busy_wait(500);
}
if (ppu.state & cpu_flag::signal)
{
continue;
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
// Wait for rescheduling
if (ppu.check_state())
{
continue;
}
std::lock_guard lock(flag->mutex);
if (!flag->unqueue(flag->sq, &ppu))
{
break;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
ppu.gpr[6] = flag->pattern;
break;
}
}
else
{
ppu.state.wait(state);
}
}
store.val = ppu.gpr[6];
return not_an_error(ppu.gpr[3]);
}
error_code sys_event_flag_trywait(ppu_thread& ppu, u32 id, u64 bitptn, u32 mode, vm::ptr<u64> result)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_trywait(id=0x%x, bitptn=0x%llx, mode=0x%x, result=*0x%x)", id, bitptn, mode, result);
// Always set result
struct store_result
{
vm::ptr<u64> ptr;
u64 val = 0;
~store_result() noexcept
{
if (ptr)
{
cpu_thread::get_current()->check_state();
*ptr = val;
}
}
} store{result};
if (!lv2_event_flag::check_mode(mode))
{
sys_event_flag.error("sys_event_flag_trywait(): unknown mode (0x%x)", mode);
return CELL_EINVAL;
}
u64 pattern{};
const auto flag = idm::check<lv2_obj, lv2_event_flag>(id, [&](lv2_event_flag& flag)
{
return flag.pattern.fetch_op([&](u64& pat)
{
return lv2_event_flag::check_pattern(pat, bitptn, mode, &pattern);
}).second;
});
if (!flag)
{
return CELL_ESRCH;
}
if (!flag.ret)
{
return not_an_error(CELL_EBUSY);
}
store.val = pattern;
return CELL_OK;
}
error_code sys_event_flag_set(cpu_thread& cpu, u32 id, u64 bitptn)
{
cpu.state += cpu_flag::wait;
// Warning: may be called from SPU thread.
sys_event_flag.trace("sys_event_flag_set(id=0x%x, bitptn=0x%llx)", id, bitptn);
const auto flag = idm::get<lv2_obj, lv2_event_flag>(id);
if (!flag)
{
return CELL_ESRCH;
}
if ((flag->pattern & bitptn) == bitptn)
{
return CELL_OK;
}
if (lv2_obj::notify_all_t notify; true)
{
std::lock_guard lock(flag->mutex);
for (auto ppu = +flag->sq; ppu; ppu = ppu->next_cpu)
{
if (ppu->state & cpu_flag::again)
{
cpu.state += cpu_flag::again;
// Fake error for abort
return not_an_error(CELL_EAGAIN);
}
}
// Process all waiters in single atomic op
const u32 count = flag->pattern.atomic_op([&](u64& value)
{
value |= bitptn;
u32 count = 0;
if (!flag->sq)
{
return count;
}
for (auto ppu = +flag->sq; ppu; ppu = ppu->next_cpu)
{
ppu->gpr[7] = 0;
}
auto first = +flag->sq;
auto get_next = [&]() -> ppu_thread*
{
s32 prio = smax;
ppu_thread* it{};
for (auto ppu = first; ppu; ppu = ppu->next_cpu)
{
if (!ppu->gpr[7] && (flag->protocol != SYS_SYNC_PRIORITY || ppu->prio <= prio))
{
it = ppu;
prio = ppu->prio;
}
}
if (it)
{
// Mark it so it won't reappear
it->gpr[7] = 1;
}
return it;
};
while (auto it = get_next())
{
auto& ppu = *it;
const u64 pattern = ppu.gpr[4];
const u64 mode = ppu.gpr[5];
if (lv2_event_flag::check_pattern(value, pattern, mode, &ppu.gpr[6]))
{
ppu.gpr[3] = CELL_OK;
count++;
}
else
{
ppu.gpr[3] = -1;
}
}
return count;
});
if (!count)
{
return CELL_OK;
}
// Remove waiters
for (auto next_cpu = &flag->sq; *next_cpu;)
{
auto& ppu = **next_cpu;
if (ppu.gpr[3] == CELL_OK)
{
atomic_storage<ppu_thread*>::release(*next_cpu, ppu.next_cpu);
ppu.next_cpu = nullptr;
flag->append(&ppu);
continue;
}
next_cpu = &ppu.next_cpu;
};
lv2_obj::awake_all();
}
return CELL_OK;
}
error_code sys_event_flag_clear(ppu_thread& ppu, u32 id, u64 bitptn)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_clear(id=0x%x, bitptn=0x%llx)", id, bitptn);
const auto flag = idm::check<lv2_obj, lv2_event_flag>(id, [&](lv2_event_flag& flag)
{
flag.pattern &= bitptn;
});
if (!flag)
{
return CELL_ESRCH;
}
return CELL_OK;
}
error_code sys_event_flag_cancel(ppu_thread& ppu, u32 id, vm::ptr<u32> num)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_cancel(id=0x%x, num=*0x%x)", id, num);
if (num) *num = 0;
const auto flag = idm::get<lv2_obj, lv2_event_flag>(id);
if (!flag)
{
return CELL_ESRCH;
}
u32 value = 0;
{
lv2_obj::notify_all_t notify;
std::lock_guard lock(flag->mutex);
for (auto cpu = +flag->sq; cpu; cpu = cpu->next_cpu)
{
if (cpu->state & cpu_flag::again)
{
ppu.state += cpu_flag::again;
return {};
}
}
// Get current pattern
const u64 pattern = flag->pattern;
// Signal all threads to return CELL_ECANCELED (protocol does not matter)
while (auto ppu = flag->schedule<ppu_thread>(flag->sq, SYS_SYNC_FIFO))
{
ppu->gpr[3] = CELL_ECANCELED;
ppu->gpr[6] = pattern;
value++;
flag->append(ppu);
}
if (value)
{
lv2_obj::awake_all();
}
}
static_cast<void>(ppu.test_stopped());
if (num) *num = value;
return CELL_OK;
}
error_code sys_event_flag_get(ppu_thread& ppu, u32 id, vm::ptr<u64> flags)
{
ppu.state += cpu_flag::wait;
sys_event_flag.trace("sys_event_flag_get(id=0x%x, flags=*0x%x)", id, flags);
const auto flag = idm::check<lv2_obj, lv2_event_flag>(id, [](lv2_event_flag& flag)
{
return +flag.pattern;
});
ppu.check_state();
if (!flag)
{
if (flags) *flags = 0;
return CELL_ESRCH;
}
if (!flags)
{
return CELL_EFAULT;
}
*flags = flag.ret;
return CELL_OK;
}