rpcs3/rpcs3/Emu/Cell/lv2/sys_memory.cpp
2023-02-15 08:58:02 +01:00

419 lines
9 KiB
C++

#include "stdafx.h"
#include "sys_memory.h"
#include "Emu/Memory/vm_locking.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/IdManager.h"
#include "util/vm.hpp"
#include "util/asm.hpp"
LOG_CHANNEL(sys_memory);
//
static shared_mutex s_memstats_mtx;
lv2_memory_container::lv2_memory_container(u32 size, bool from_idm) noexcept
: size(size)
, id{from_idm ? idm::last_id() : SYS_MEMORY_CONTAINER_ID_INVALID}
{
}
lv2_memory_container::lv2_memory_container(utils::serial& ar, bool from_idm) noexcept
: size(ar)
, id{from_idm ? idm::last_id() : SYS_MEMORY_CONTAINER_ID_INVALID}
, used(ar)
{
}
std::shared_ptr<void> lv2_memory_container::load(utils::serial& ar)
{
// Use idm::last_id() only for the instances at IDM
return std::make_shared<lv2_memory_container>(stx::exact_t<utils::serial&>(ar), true);
}
void lv2_memory_container::save(utils::serial& ar)
{
ar(size, used);
}
lv2_memory_container* lv2_memory_container::search(u32 id)
{
if (id != SYS_MEMORY_CONTAINER_ID_INVALID)
{
return idm::check<lv2_memory_container>(id);
}
return &g_fxo->get<lv2_memory_container>();
}
struct sys_memory_address_table
{
atomic_t<lv2_memory_container*> addrs[65536]{};
sys_memory_address_table() = default;
SAVESTATE_INIT_POS(id_manager::id_map<lv2_memory_container>::savestate_init_pos + 0.1);
sys_memory_address_table(utils::serial& ar)
{
// First: address, second: conatiner ID (SYS_MEMORY_CONTAINER_ID_INVALID for global FXO memory container)
std::unordered_map<u16, u32> mm;
ar(mm);
for (const auto& [addr, id] : mm)
{
addrs[addr] = ensure(lv2_memory_container::search(id));
}
}
void save(utils::serial& ar)
{
std::unordered_map<u16, u32> mm;
for (auto& ctr : addrs)
{
if (const auto ptr = +ctr)
{
mm[static_cast<u16>(&ctr - addrs)] = ptr->id;
}
}
ar(mm);
}
};
// Todo: fix order of error checks
error_code sys_memory_allocate(cpu_thread& cpu, u32 size, u64 flags, vm::ptr<u32> alloc_addr)
{
cpu.state += cpu_flag::wait;
sys_memory.warning("sys_memory_allocate(size=0x%x, flags=0x%llx, alloc_addr=*0x%x)", size, flags, alloc_addr);
if (!size)
{
return {CELL_EALIGN, size};
}
// Check allocation size
const u32 align =
flags == SYS_MEMORY_PAGE_SIZE_1M ? 0x100000 :
flags == SYS_MEMORY_PAGE_SIZE_64K ? 0x10000 :
flags == 0 ? 0x100000 : 0;
if (!align)
{
return {CELL_EINVAL, flags};
}
if (size % align)
{
return {CELL_EALIGN, size};
}
// Get "default" memory container
auto& dct = g_fxo->get<lv2_memory_container>();
// Try to get "physical memory"
if (!dct.take(size))
{
return CELL_ENOMEM;
}
if (const auto area = vm::reserve_map(align == 0x10000 ? vm::user64k : vm::user1m, 0, utils::align(size, 0x10000000), 0x401))
{
if (const u32 addr = area->alloc(size, nullptr, align))
{
ensure(!g_fxo->get<sys_memory_address_table>().addrs[addr >> 16].exchange(&dct));
if (alloc_addr)
{
vm::lock_sudo(addr, size);
cpu.check_state();
*alloc_addr = addr;
return CELL_OK;
}
// Dealloc using the syscall
sys_memory_free(cpu, addr);
return CELL_EFAULT;
}
}
dct.free(size);
return CELL_ENOMEM;
}
error_code sys_memory_allocate_from_container(cpu_thread& cpu, u32 size, u32 cid, u64 flags, vm::ptr<u32> alloc_addr)
{
cpu.state += cpu_flag::wait;
sys_memory.warning("sys_memory_allocate_from_container(size=0x%x, cid=0x%x, flags=0x%llx, alloc_addr=*0x%x)", size, cid, flags, alloc_addr);
if (!size)
{
return {CELL_EALIGN, size};
}
// Check allocation size
const u32 align =
flags == SYS_MEMORY_PAGE_SIZE_1M ? 0x100000 :
flags == SYS_MEMORY_PAGE_SIZE_64K ? 0x10000 :
flags == 0 ? 0x100000 : 0;
if (!align)
{
return {CELL_EINVAL, flags};
}
if (size % align)
{
return {CELL_EALIGN, size};
}
const auto ct = idm::get<lv2_memory_container>(cid, [&](lv2_memory_container& ct) -> CellError
{
// Try to get "physical memory"
if (!ct.take(size))
{
return CELL_ENOMEM;
}
return {};
});
if (!ct)
{
return CELL_ESRCH;
}
if (ct.ret)
{
return ct.ret;
}
if (const auto area = vm::reserve_map(align == 0x10000 ? vm::user64k : vm::user1m, 0, utils::align(size, 0x10000000), 0x401))
{
if (const u32 addr = area->alloc(size))
{
ensure(!g_fxo->get<sys_memory_address_table>().addrs[addr >> 16].exchange(ct.ptr.get()));
if (alloc_addr)
{
vm::lock_sudo(addr, size);
cpu.check_state();
*alloc_addr = addr;
return CELL_OK;
}
// Dealloc using the syscall
sys_memory_free(cpu, addr);
return CELL_EFAULT;
}
}
ct->free(size);
return CELL_ENOMEM;
}
error_code sys_memory_free(cpu_thread& cpu, u32 addr)
{
cpu.state += cpu_flag::wait;
sys_memory.warning("sys_memory_free(addr=0x%x)", addr);
const auto ct = addr % 0x10000 ? nullptr : g_fxo->get<sys_memory_address_table>().addrs[addr >> 16].exchange(nullptr);
if (!ct)
{
return {CELL_EINVAL, addr};
}
const auto size = (ensure(vm::dealloc(addr)));
reader_lock{id_manager::g_mutex}, ct->free(size);
return CELL_OK;
}
error_code sys_memory_get_page_attribute(cpu_thread& cpu, u32 addr, vm::ptr<sys_page_attr_t> attr)
{
cpu.state += cpu_flag::wait;
sys_memory.trace("sys_memory_get_page_attribute(addr=0x%x, attr=*0x%x)", addr, attr);
vm::writer_lock rlock;
if (!vm::check_addr(addr) || addr >= SPU_FAKE_BASE_ADDR)
{
return CELL_EINVAL;
}
if (!vm::check_addr(attr.addr(), vm::page_readable, attr.size()))
{
return CELL_EFAULT;
}
attr->attribute = 0x40000ull; // SYS_MEMORY_PROT_READ_WRITE (TODO)
attr->access_right = addr >> 28 == 0xdu ? SYS_MEMORY_ACCESS_RIGHT_PPU_THR : SYS_MEMORY_ACCESS_RIGHT_ANY;// (TODO)
if (vm::check_addr(addr, vm::page_1m_size))
{
attr->page_size = 0x100000;
}
else if (vm::check_addr(addr, vm::page_64k_size))
{
attr->page_size = 0x10000;
}
else
{
attr->page_size = 4096;
}
attr->pad = 0; // Always write 0
return CELL_OK;
}
error_code sys_memory_get_user_memory_size(cpu_thread& cpu, vm::ptr<sys_memory_info_t> mem_info)
{
cpu.state += cpu_flag::wait;
sys_memory.warning("sys_memory_get_user_memory_size(mem_info=*0x%x)", mem_info);
// Get "default" memory container
auto& dct = g_fxo->get<lv2_memory_container>();
sys_memory_info_t out{};
{
::reader_lock lock(s_memstats_mtx);
out.total_user_memory = dct.size;
out.available_user_memory = dct.size - dct.used;
// Scan other memory containers
idm::select<lv2_memory_container>([&](u32, lv2_memory_container& ct)
{
out.total_user_memory -= ct.size;
});
}
cpu.check_state();
*mem_info = out;
return CELL_OK;
}
error_code sys_memory_get_user_memory_stat(cpu_thread& cpu, vm::ptr<sys_memory_user_memory_stat_t> mem_stat)
{
cpu.state += cpu_flag::wait;
sys_memory.todo("sys_memory_get_user_memory_stat(mem_stat=*0x%x)", mem_stat);
return CELL_OK;
}
error_code sys_memory_container_create(cpu_thread& cpu, vm::ptr<u32> cid, u32 size)
{
cpu.state += cpu_flag::wait;
sys_memory.warning("sys_memory_container_create(cid=*0x%x, size=0x%x)", cid, size);
// Round down to 1 MB granularity
size &= ~0xfffff;
if (!size)
{
return CELL_ENOMEM;
}
auto& dct = g_fxo->get<lv2_memory_container>();
std::lock_guard lock(s_memstats_mtx);
// Try to obtain "physical memory" from the default container
if (!dct.take(size))
{
return CELL_ENOMEM;
}
// Create the memory container
if (const u32 id = idm::make<lv2_memory_container>(size, true))
{
cpu.check_state();
*cid = id;
return CELL_OK;
}
dct.free(size);
return CELL_EAGAIN;
}
error_code sys_memory_container_destroy(cpu_thread& cpu, u32 cid)
{
cpu.state += cpu_flag::wait;
sys_memory.warning("sys_memory_container_destroy(cid=0x%x)", cid);
std::lock_guard lock(s_memstats_mtx);
const auto ct = idm::withdraw<lv2_memory_container>(cid, [](lv2_memory_container& ct) -> CellError
{
// Check if some memory is not deallocated (the container cannot be destroyed in this case)
if (!ct.used.compare_and_swap_test(0, ct.size))
{
return CELL_EBUSY;
}
return {};
});
if (!ct)
{
return CELL_ESRCH;
}
if (ct.ret)
{
return ct.ret;
}
// Return "physical memory" to the default container
g_fxo->get<lv2_memory_container>().free(ct->size);
return CELL_OK;
}
error_code sys_memory_container_get_size(cpu_thread& cpu, vm::ptr<sys_memory_info_t> mem_info, u32 cid)
{
cpu.state += cpu_flag::wait;
sys_memory.warning("sys_memory_container_get_size(mem_info=*0x%x, cid=0x%x)", mem_info, cid);
const auto ct = idm::get<lv2_memory_container>(cid);
if (!ct)
{
return CELL_ESRCH;
}
cpu.check_state();
mem_info->total_user_memory = ct->size; // Total container memory
mem_info->available_user_memory = ct->size - ct->used; // Available container memory
return CELL_OK;
}
error_code sys_memory_container_destroy_parent_with_childs(cpu_thread& cpu, u32 cid, u32 must_0, vm::ptr<u32> mc_child)
{
sys_memory.warning("sys_memory_container_destroy_parent_with_childs(cid=0x%x, must_0=%d, mc_child=*0x%x)", cid, must_0, mc_child);
if (must_0)
{
return CELL_EINVAL;
}
// Multi-process is not supported yet so child containers mean nothing at the moment
// Simply destroy parent
return sys_memory_container_destroy(cpu, cid);
}