xemu/util/qemu-thread-win32.c
David Hildenbrand 7730f32c28 util: Introduce qemu_thread_set_affinity() and qemu_thread_get_affinity()
Usually, we let upper layers handle CPU pinning, because
pthread_setaffinity_np() (-> sched_setaffinity()) is blocked via
seccomp when starting QEMU with
    -sandbox enable=on,resourcecontrol=deny

However, we want to configure and observe the CPU affinity of threads
from QEMU directly in some cases when the sandbox option is either not
enabled or not active yet.

So let's add a way to configure CPU pinning via
qemu_thread_set_affinity() and obtain CPU affinity via
qemu_thread_get_affinity() and implement them under POSIX using
pthread_setaffinity_np() + pthread_getaffinity_np().

Implementation under Windows is possible using SetProcessAffinityMask()
+ GetProcessAffinityMask(), however, that is left as future work.

Reviewed-by: Michal Privoznik <mprivozn@redhat.com>
Message-Id: <20221014134720.168738-3-david@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
2022-10-27 11:00:36 +02:00

523 lines
13 KiB
C

/*
* Win32 implementation for mutex/cond/thread functions
*
* Copyright Red Hat, Inc. 2010
*
* Author:
* Paolo Bonzini <pbonzini@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/thread.h"
#include "qemu/notify.h"
#include "qemu-thread-common.h"
#include <process.h>
static bool name_threads;
typedef HRESULT (WINAPI *pSetThreadDescription) (HANDLE hThread,
PCWSTR lpThreadDescription);
static pSetThreadDescription SetThreadDescriptionFunc;
static HMODULE kernel32_module;
static bool load_set_thread_description(void)
{
static gsize _init_once = 0;
if (g_once_init_enter(&_init_once)) {
kernel32_module = LoadLibrary("kernel32.dll");
if (kernel32_module) {
SetThreadDescriptionFunc =
(pSetThreadDescription)GetProcAddress(kernel32_module,
"SetThreadDescription");
if (!SetThreadDescriptionFunc) {
FreeLibrary(kernel32_module);
}
}
g_once_init_leave(&_init_once, 1);
}
return !!SetThreadDescriptionFunc;
}
void qemu_thread_naming(bool enable)
{
name_threads = enable;
if (enable && !load_set_thread_description()) {
fprintf(stderr, "qemu: thread naming not supported on this host\n");
name_threads = false;
}
}
static void error_exit(int err, const char *msg)
{
char *pstr;
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
LocalFree(pstr);
abort();
}
void qemu_mutex_init(QemuMutex *mutex)
{
InitializeSRWLock(&mutex->lock);
qemu_mutex_post_init(mutex);
}
void qemu_mutex_destroy(QemuMutex *mutex)
{
assert(mutex->initialized);
mutex->initialized = false;
InitializeSRWLock(&mutex->lock);
}
void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
{
assert(mutex->initialized);
qemu_mutex_pre_lock(mutex, file, line);
AcquireSRWLockExclusive(&mutex->lock);
qemu_mutex_post_lock(mutex, file, line);
}
int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
{
int owned;
assert(mutex->initialized);
owned = TryAcquireSRWLockExclusive(&mutex->lock);
if (owned) {
qemu_mutex_post_lock(mutex, file, line);
return 0;
}
return -EBUSY;
}
void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
{
assert(mutex->initialized);
qemu_mutex_pre_unlock(mutex, file, line);
ReleaseSRWLockExclusive(&mutex->lock);
}
void qemu_rec_mutex_init(QemuRecMutex *mutex)
{
InitializeCriticalSection(&mutex->lock);
mutex->initialized = true;
}
void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
{
assert(mutex->initialized);
mutex->initialized = false;
DeleteCriticalSection(&mutex->lock);
}
void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
{
assert(mutex->initialized);
EnterCriticalSection(&mutex->lock);
}
int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
{
assert(mutex->initialized);
return !TryEnterCriticalSection(&mutex->lock);
}
void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line)
{
assert(mutex->initialized);
LeaveCriticalSection(&mutex->lock);
}
void qemu_cond_init(QemuCond *cond)
{
memset(cond, 0, sizeof(*cond));
InitializeConditionVariable(&cond->var);
cond->initialized = true;
}
void qemu_cond_destroy(QemuCond *cond)
{
assert(cond->initialized);
cond->initialized = false;
InitializeConditionVariable(&cond->var);
}
void qemu_cond_signal(QemuCond *cond)
{
assert(cond->initialized);
WakeConditionVariable(&cond->var);
}
void qemu_cond_broadcast(QemuCond *cond)
{
assert(cond->initialized);
WakeAllConditionVariable(&cond->var);
}
void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
{
assert(cond->initialized);
qemu_mutex_pre_unlock(mutex, file, line);
SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
qemu_mutex_post_lock(mutex, file, line);
}
bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms,
const char *file, const int line)
{
int rc = 0;
assert(cond->initialized);
trace_qemu_mutex_unlock(mutex, file, line);
if (!SleepConditionVariableSRW(&cond->var, &mutex->lock, ms, 0)) {
rc = GetLastError();
}
trace_qemu_mutex_locked(mutex, file, line);
if (rc && rc != ERROR_TIMEOUT) {
error_exit(rc, __func__);
}
return rc != ERROR_TIMEOUT;
}
void qemu_sem_init(QemuSemaphore *sem, int init)
{
/* Manual reset. */
sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
sem->initialized = true;
}
void qemu_sem_destroy(QemuSemaphore *sem)
{
assert(sem->initialized);
sem->initialized = false;
CloseHandle(sem->sema);
}
void qemu_sem_post(QemuSemaphore *sem)
{
assert(sem->initialized);
ReleaseSemaphore(sem->sema, 1, NULL);
}
int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
{
int rc;
assert(sem->initialized);
rc = WaitForSingleObject(sem->sema, ms);
if (rc == WAIT_OBJECT_0) {
return 0;
}
if (rc != WAIT_TIMEOUT) {
error_exit(GetLastError(), __func__);
}
return -1;
}
void qemu_sem_wait(QemuSemaphore *sem)
{
assert(sem->initialized);
if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
error_exit(GetLastError(), __func__);
}
}
/* Wrap a Win32 manual-reset event with a fast userspace path. The idea
* is to reset the Win32 event lazily, as part of a test-reset-test-wait
* sequence. Such a sequence is, indeed, how QemuEvents are used by
* RCU and other subsystems!
*
* Valid transitions:
* - free->set, when setting the event
* - busy->set, when setting the event, followed by SetEvent
* - set->free, when resetting the event
* - free->busy, when waiting
*
* set->busy does not happen (it can be observed from the outside but
* it really is set->free->busy).
*
* busy->free provably cannot happen; to enforce it, the set->free transition
* is done with an OR, which becomes a no-op if the event has concurrently
* transitioned to free or busy (and is faster than cmpxchg).
*/
#define EV_SET 0
#define EV_FREE 1
#define EV_BUSY -1
void qemu_event_init(QemuEvent *ev, bool init)
{
/* Manual reset. */
ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
ev->value = (init ? EV_SET : EV_FREE);
ev->initialized = true;
}
void qemu_event_destroy(QemuEvent *ev)
{
assert(ev->initialized);
ev->initialized = false;
CloseHandle(ev->event);
}
void qemu_event_set(QemuEvent *ev)
{
assert(ev->initialized);
/* qemu_event_set has release semantics, but because it *loads*
* ev->value we need a full memory barrier here.
*/
smp_mb();
if (qatomic_read(&ev->value) != EV_SET) {
if (qatomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
/* There were waiters, wake them up. */
SetEvent(ev->event);
}
}
}
void qemu_event_reset(QemuEvent *ev)
{
unsigned value;
assert(ev->initialized);
value = qatomic_read(&ev->value);
smp_mb_acquire();
if (value == EV_SET) {
/* If there was a concurrent reset (or even reset+wait),
* do nothing. Otherwise change EV_SET->EV_FREE.
*/
qatomic_or(&ev->value, EV_FREE);
}
}
void qemu_event_wait(QemuEvent *ev)
{
unsigned value;
assert(ev->initialized);
value = qatomic_read(&ev->value);
smp_mb_acquire();
if (value != EV_SET) {
if (value == EV_FREE) {
/* qemu_event_set is not yet going to call SetEvent, but we are
* going to do another check for EV_SET below when setting EV_BUSY.
* At that point it is safe to call WaitForSingleObject.
*/
ResetEvent(ev->event);
/* Tell qemu_event_set that there are waiters. No need to retry
* because there cannot be a concurrent busy->free transition.
* After the CAS, the event will be either set or busy.
*/
if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
value = EV_SET;
} else {
value = EV_BUSY;
}
}
if (value == EV_BUSY) {
WaitForSingleObject(ev->event, INFINITE);
}
}
}
struct QemuThreadData {
/* Passed to win32_start_routine. */
void *(*start_routine)(void *);
void *arg;
short mode;
NotifierList exit;
/* Only used for joinable threads. */
bool exited;
void *ret;
CRITICAL_SECTION cs;
};
static bool atexit_registered;
static NotifierList main_thread_exit;
static __thread QemuThreadData *qemu_thread_data;
static void run_main_thread_exit(void)
{
notifier_list_notify(&main_thread_exit, NULL);
}
void qemu_thread_atexit_add(Notifier *notifier)
{
if (!qemu_thread_data) {
if (!atexit_registered) {
atexit_registered = true;
atexit(run_main_thread_exit);
}
notifier_list_add(&main_thread_exit, notifier);
} else {
notifier_list_add(&qemu_thread_data->exit, notifier);
}
}
void qemu_thread_atexit_remove(Notifier *notifier)
{
notifier_remove(notifier);
}
static unsigned __stdcall win32_start_routine(void *arg)
{
QemuThreadData *data = (QemuThreadData *) arg;
void *(*start_routine)(void *) = data->start_routine;
void *thread_arg = data->arg;
qemu_thread_data = data;
qemu_thread_exit(start_routine(thread_arg));
abort();
}
void qemu_thread_exit(void *arg)
{
QemuThreadData *data = qemu_thread_data;
notifier_list_notify(&data->exit, NULL);
if (data->mode == QEMU_THREAD_JOINABLE) {
data->ret = arg;
EnterCriticalSection(&data->cs);
data->exited = true;
LeaveCriticalSection(&data->cs);
} else {
g_free(data);
}
_endthreadex(0);
}
void *qemu_thread_join(QemuThread *thread)
{
QemuThreadData *data;
void *ret;
HANDLE handle;
data = thread->data;
if (data->mode == QEMU_THREAD_DETACHED) {
return NULL;
}
/*
* Because multiple copies of the QemuThread can exist via
* qemu_thread_get_self, we need to store a value that cannot
* leak there. The simplest, non racy way is to store the TID,
* discard the handle that _beginthreadex gives back, and
* get another copy of the handle here.
*/
handle = qemu_thread_get_handle(thread);
if (handle) {
WaitForSingleObject(handle, INFINITE);
CloseHandle(handle);
}
ret = data->ret;
DeleteCriticalSection(&data->cs);
g_free(data);
return ret;
}
static bool set_thread_description(HANDLE h, const char *name)
{
HRESULT hr;
g_autofree wchar_t *namew = NULL;
if (!load_set_thread_description()) {
return false;
}
namew = g_utf8_to_utf16(name, -1, NULL, NULL, NULL);
if (!namew) {
return false;
}
hr = SetThreadDescriptionFunc(h, namew);
return SUCCEEDED(hr);
}
void qemu_thread_create(QemuThread *thread, const char *name,
void *(*start_routine)(void *),
void *arg, int mode)
{
HANDLE hThread;
struct QemuThreadData *data;
data = g_malloc(sizeof *data);
data->start_routine = start_routine;
data->arg = arg;
data->mode = mode;
data->exited = false;
notifier_list_init(&data->exit);
if (data->mode != QEMU_THREAD_DETACHED) {
InitializeCriticalSection(&data->cs);
}
hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
data, 0, &thread->tid);
if (!hThread) {
error_exit(GetLastError(), __func__);
}
if (name_threads && name && !set_thread_description(hThread, name)) {
fprintf(stderr, "qemu: failed to set thread description: %s\n", name);
}
CloseHandle(hThread);
thread->data = data;
}
int qemu_thread_set_affinity(QemuThread *thread, unsigned long *host_cpus,
unsigned long nbits)
{
return -ENOSYS;
}
int qemu_thread_get_affinity(QemuThread *thread, unsigned long **host_cpus,
unsigned long *nbits)
{
return -ENOSYS;
}
void qemu_thread_get_self(QemuThread *thread)
{
thread->data = qemu_thread_data;
thread->tid = GetCurrentThreadId();
}
HANDLE qemu_thread_get_handle(QemuThread *thread)
{
QemuThreadData *data;
HANDLE handle;
data = thread->data;
if (data->mode == QEMU_THREAD_DETACHED) {
return NULL;
}
EnterCriticalSection(&data->cs);
if (!data->exited) {
handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
THREAD_SET_CONTEXT, FALSE, thread->tid);
} else {
handle = NULL;
}
LeaveCriticalSection(&data->cs);
return handle;
}
bool qemu_thread_is_self(QemuThread *thread)
{
return GetCurrentThreadId() == thread->tid;
}