mupen64plus-core/src/device/r4300/new_dynarec/new_dynarec.c
Bobby Smiles efdeaf32c7 Fix interrupt spelling.
s/interupt/interrupt/
2017-03-07 06:17:04 +01:00

11162 lines
379 KiB
C

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Mupen64plus - new_dynarec.c *
* Copyright (C) 2009-2011 Ari64 *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#if defined(__APPLE__)
#include <sys/types.h> // needed for u_int, u_char, etc
#define MAP_ANONYMOUS MAP_ANON
#endif
#include "new_dynarec.h"
#include "main/main.h"
#include "main/rom.h"
#include "device/memory/memory.h"
#include "device/rsp/rsp_core.h"
#include "device/r4300/cached_interp.h"
#include "device/r4300/cp1.h"
#include "device/r4300/interrupt.h"
#include "device/r4300/ops.h"
#include "device/r4300/recomp.h"
#include "device/r4300/tlb.h"
#include "device/r4300/fpu.h"
#if !defined(WIN32)
#include <sys/mman.h>
#endif
#if NEW_DYNAREC == NEW_DYNAREC_X86
#include "x86/assem_x86.h"
#elif NEW_DYNAREC == NEW_DYNAREC_ARM
#include "arm/arm_cpu_features.h"
#include "arm/assem_arm.h"
#else
#error Unsupported dynarec architecture
#endif
/* debug */
#define ASSEM_DEBUG 0
#define INV_DEBUG 0
#define COUNT_NOTCOMPILEDS 0
static void nullf() {}
#if ASSEM_DEBUG
#define assem_debug(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
#else
#define assem_debug nullf
#endif
#if INV_DEBUG
#define inv_debug(...) DebugMessage(M64MSG_VERBOSE, __VA_ARGS__)
#else
#define inv_debug nullf
#endif
/* registers that may be allocated */
/* 1-31 gpr */
#define HIREG 32 // hi
#define LOREG 33 // lo
#define FSREG 34 // FPU status (FCSR)
#define CSREG 35 // Coprocessor status
#define CCREG 36 // Cycle count
#define INVCP 37 // Pointer to invalid_code
#define MMREG 38 // Pointer to memory_map
#define ROREG 39 // ram offset (if rdram!=0x80000000)
#define TEMPREG 40
#define FTEMP 40 // FPU temporary register
#define PTEMP 41 // Prefetch temporary register
#define TLREG 42 // TLB mapping offset
#define RHASH 43 // Return address hash
#define RHTBL 44 // Return address hash table address
#define RTEMP 45 // JR/JALR address register
#define MAXREG 45
#define AGEN1 46 // Address generation temporary register
#define AGEN2 47 // Address generation temporary register
#define MGEN1 48 // Maptable address generation temporary register
#define MGEN2 49 // Maptable address generation temporary register
#define BTREG 50 // Branch target temporary register
/* instruction types */
#define NOP 0 // No operation
#define LOAD 1 // Load
#define STORE 2 // Store
#define LOADLR 3 // Unaligned load
#define STORELR 4 // Unaligned store
#define MOV 5 // Move
#define ALU 6 // Arithmetic/logic
#define MULTDIV 7 // Multiply/divide
#define SHIFT 8 // Shift by register
#define SHIFTIMM 9// Shift by immediate
#define IMM16 10 // 16-bit immediate
#define RJUMP 11 // Unconditional jump to register
#define UJUMP 12 // Unconditional jump
#define CJUMP 13 // Conditional branch (BEQ/BNE/BGTZ/BLEZ)
#define SJUMP 14 // Conditional branch (regimm format)
#define COP0 15 // Coprocessor 0
#define COP1 16 // Coprocessor 1
#define C1LS 17 // Coprocessor 1 load/store
#define FJUMP 18 // Conditional branch (floating point)
#define FLOAT 19 // Floating point unit
#define FCONV 20 // Convert integer to float
#define FCOMP 21 // Floating point compare (sets FSREG)
#define SYSCALL 22// SYSCALL
#define OTHER 23 // Other
#define SPAN 24 // Branch/delay slot spans 2 pages
#define NI 25 // Not implemented
/* stubs */
#define CC_STUB 1
#define FP_STUB 2
#define LOADB_STUB 3
#define LOADH_STUB 4
#define LOADW_STUB 5
#define LOADD_STUB 6
#define LOADBU_STUB 7
#define LOADHU_STUB 8
#define STOREB_STUB 9
#define STOREH_STUB 10
#define STOREW_STUB 11
#define STORED_STUB 12
#define STORELR_STUB 13
#define INVCODE_STUB 14
/* branch codes */
#define TAKEN 1
#define NOTTAKEN 2
#define NULLDS 3
#define MAXBLOCK 4096
#define MAX_OUTPUT_BLOCK_SIZE 262144
#define CLOCK_DIVIDER g_dev.r4300.cp0.count_per_op
struct regstat
{
signed char regmap_entry[HOST_REGS];
signed char regmap[HOST_REGS];
uint64_t was32;
uint64_t is32;
uint64_t wasdirty;
uint64_t dirty;
uint64_t u;
uint64_t uu;
u_int wasconst;
u_int isconst;
uint64_t constmap[HOST_REGS];
};
struct ll_entry
{
u_int vaddr;
u_int reg32;
void *addr;
struct ll_entry *next;
};
/* linkage */
void verify_code(void);
void verify_code_vm(void);
void verify_code_ds(void);
void cc_interrupt(void);
void do_interrupt(void);
void fp_exception(void);
void fp_exception_ds(void);
void jump_syscall(void);
void jump_eret(void);
void read_nomem_new(void);
void read_nomemb_new(void);
void read_nomemh_new(void);
void read_nomemd_new(void);
void write_nomem_new(void);
void write_nomemb_new(void);
void write_nomemh_new(void);
void write_nomemd_new(void);
void write_rdram_new(void);
void write_rdramb_new(void);
void write_rdramh_new(void);
void write_rdramd_new(void);
void write_mi_new(void);
void write_mib_new(void);
void write_mih_new(void);
void write_mid_new(void);
/* interpreted opcode */
static void div64(int64_t dividend,int64_t divisor);
static void divu64(uint64_t dividend,uint64_t divisor);
static uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits);
static uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits);
static void TLBWI_new(void);
static void TLBWR_new(void);
int new_recompile_block(int addr);
void invalidate_block(u_int block);
void *TLB_refill_exception_new(u_int inst_addr, u_int mem_addr, int w);
static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32);
static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty);
static void load_regs_entry(int t);
static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i);
void *base_addr;
u_char *out;
unsigned int stop_after_jal;
static u_int start;
static u_int *source;
static u_int pagelimit;
static char insn[MAXBLOCK][10];
static u_char itype[MAXBLOCK];
static u_char opcode[MAXBLOCK];
static u_char opcode2[MAXBLOCK];
static u_char bt[MAXBLOCK];
static u_char rs1[MAXBLOCK];
static u_char rs2[MAXBLOCK];
static u_char rt1[MAXBLOCK];
static u_char rt2[MAXBLOCK];
static u_char us1[MAXBLOCK];
static u_char us2[MAXBLOCK];
static u_char dep1[MAXBLOCK];
static u_char dep2[MAXBLOCK];
static u_char lt1[MAXBLOCK];
static int imm[MAXBLOCK];
static u_int ba[MAXBLOCK];
static char likely[MAXBLOCK];
static char is_ds[MAXBLOCK];
static char ooo[MAXBLOCK];
static uint64_t unneeded_reg[MAXBLOCK];
static uint64_t unneeded_reg_upper[MAXBLOCK];
static uint64_t branch_unneeded_reg[MAXBLOCK];
static uint64_t branch_unneeded_reg_upper[MAXBLOCK];
static uint64_t p32[MAXBLOCK];
static uint64_t pr32[MAXBLOCK];
static signed char regmap_pre[MAXBLOCK][HOST_REGS];
static uint64_t constmap[MAXBLOCK][HOST_REGS];
static struct regstat regs[MAXBLOCK];
static struct regstat branch_regs[MAXBLOCK];
static signed char minimum_free_regs[MAXBLOCK];
static u_int needed_reg[MAXBLOCK];
static uint64_t requires_32bit[MAXBLOCK];
static u_int wont_dirty[MAXBLOCK];
static u_int will_dirty[MAXBLOCK];
static int ccadj[MAXBLOCK];
static int slen;
static u_int instr_addr[MAXBLOCK];
static u_int link_addr[MAXBLOCK][3];
static int linkcount;
static u_int stubs[MAXBLOCK*3][8];
static int stubcount;
static int literalcount;
static int is_delayslot;
static int cop1_usable;
static char *copy;
static int expirep;
unsigned int using_tlb;
unsigned int stop_after_jal;
static u_int dirty_entry_count;
static u_int copy_size;
static u_int hash_table[65536][4];
static struct ll_entry *jump_in[4096];
static struct ll_entry *jump_dirty[4096];
static struct ll_entry *jump_out[4096];
#if COUNT_NOTCOMPILEDS
static int notcompiledCount = 0;
#endif
#if ASSEM_DEBUG
static signed char regmap[MAXBLOCK][HOST_REGS];
static signed char regmap_entry[MAXBLOCK][HOST_REGS];
#endif
static void clear_all_regs(signed char regmap[])
{
int hr;
for (hr=0;hr<HOST_REGS;hr++) regmap[hr]=-1;
}
static signed char get_reg(signed char regmap[],int r)
{
int hr;
for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap[hr]==r) return hr;
return -1;
}
// Find a register that is available for two consecutive cycles
static signed char get_reg2(signed char regmap1[],signed char regmap2[],int r)
{
int hr;
for (hr=0;hr<HOST_REGS;hr++) if(hr!=EXCLUDE_REG&&regmap1[hr]==r&&regmap2[hr]==r) return hr;
return -1;
}
static int count_free_regs(signed char regmap[])
{
int count=0;
int hr;
for(hr=0;hr<HOST_REGS;hr++)
{
if(hr!=EXCLUDE_REG) {
if(regmap[hr]<0) count++;
}
}
return count;
}
static void dirty_reg(struct regstat *cur,signed char reg)
{
int hr;
if(!reg) return;
for (hr=0;hr<HOST_REGS;hr++) {
if((cur->regmap[hr]&63)==reg) {
cur->dirty|=(uint64_t)1<<hr;
}
}
}
// If we dirty the lower half of a 64 bit register which is now being
// sign-extended, we need to dump the upper half.
// Note: Do this only after completion of the instruction, because
// some instructions may need to read the full 64-bit value even if
// overwriting it (eg SLTI, DSRA32).
static void flush_dirty_uppers(struct regstat *cur)
{
int hr,reg;
for (hr=0;hr<HOST_REGS;hr++) {
if((cur->dirty>>hr)&1) {
reg=cur->regmap[hr];
if(reg>=64)
if((cur->is32>>(reg&63))&1) cur->regmap[hr]=-1;
}
}
}
static void set_const(struct regstat *cur,signed char reg,uint64_t value)
{
int hr;
if(!reg) return;
for (hr=0;hr<HOST_REGS;hr++) {
if(cur->regmap[hr]==reg) {
cur->isconst|=1<<hr;
cur->constmap[hr]=value;
}
else if((cur->regmap[hr]^64)==reg) {
cur->isconst|=1<<hr;
cur->constmap[hr]=value>>32;
}
}
}
static void clear_const(struct regstat *cur,signed char reg)
{
int hr;
if(!reg) return;
for (hr=0;hr<HOST_REGS;hr++) {
if((cur->regmap[hr]&63)==reg) {
cur->isconst&=~(1<<hr);
}
}
}
static int is_const(struct regstat *cur,signed char reg)
{
int hr;
if(reg<0) return 0;
if(!reg) return 1;
for (hr=0;hr<HOST_REGS;hr++) {
if((cur->regmap[hr]&63)==reg) {
return (cur->isconst>>hr)&1;
}
}
return 0;
}
static uint64_t get_const(struct regstat *cur,signed char reg)
{
int hr;
if(!reg) return 0;
for (hr=0;hr<HOST_REGS;hr++) {
if(cur->regmap[hr]==reg) {
return cur->constmap[hr];
}
}
DebugMessage(M64MSG_ERROR, "Unknown constant in r%d",reg);
exit(1);
}
// Least soon needed registers
// Look at the next ten instructions and see which registers
// will be used. Try not to reallocate these.
static void lsn(u_char hsn[], int i, int *preferred_reg)
{
int j;
int b=-1;
for(j=0;j<9;j++)
{
if(i+j>=slen) {
j=slen-i-1;
break;
}
if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
{
// Don't go past an unconditonal jump
j++;
break;
}
}
for(;j>=0;j--)
{
if(rs1[i+j]) hsn[rs1[i+j]]=j;
if(rs2[i+j]) hsn[rs2[i+j]]=j;
if(rt1[i+j]) hsn[rt1[i+j]]=j;
if(rt2[i+j]) hsn[rt2[i+j]]=j;
if(itype[i+j]==STORE || itype[i+j]==STORELR) {
// Stores can allocate zero
hsn[rs1[i+j]]=j;
hsn[rs2[i+j]]=j;
}
// On some architectures stores need invc_ptr
#if defined(HOST_IMM8)
if(itype[i+j]==STORE || itype[i+j]==STORELR || (opcode[i+j]&0x3b)==0x39) {
hsn[INVCP]=j;
}
#endif
if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
{
hsn[CCREG]=j;
b=j;
}
}
if(b>=0)
{
if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
{
// Follow first branch
int t=(ba[i+b]-start)>>2;
j=7-b;if(t+j>=slen) j=slen-t-1;
for(;j>=0;j--)
{
if(rs1[t+j]) if(hsn[rs1[t+j]]>j+b+2) hsn[rs1[t+j]]=j+b+2;
if(rs2[t+j]) if(hsn[rs2[t+j]]>j+b+2) hsn[rs2[t+j]]=j+b+2;
//if(rt1[t+j]) if(hsn[rt1[t+j]]>j+b+2) hsn[rt1[t+j]]=j+b+2;
//if(rt2[t+j]) if(hsn[rt2[t+j]]>j+b+2) hsn[rt2[t+j]]=j+b+2;
}
}
// TODO: preferred register based on backward branch
}
// Delay slot should preferably not overwrite branch conditions or cycle count
if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)) {
if(rs1[i-1]) if(hsn[rs1[i-1]]>1) hsn[rs1[i-1]]=1;
if(rs2[i-1]) if(hsn[rs2[i-1]]>1) hsn[rs2[i-1]]=1;
hsn[CCREG]=1;
// ...or hash tables
hsn[RHASH]=1;
hsn[RHTBL]=1;
}
// Coprocessor load/store needs FTEMP, even if not declared
if(itype[i]==C1LS) {
hsn[FTEMP]=0;
}
// Load L/R also uses FTEMP as a temporary register
if(itype[i]==LOADLR) {
hsn[FTEMP]=0;
}
// Also 64-bit SDL/SDR
if(opcode[i]==0x2c||opcode[i]==0x2d) {
hsn[FTEMP]=0;
}
// Don't remove the TLB registers either
if(itype[i]==LOAD || itype[i]==LOADLR || itype[i]==STORE || itype[i]==STORELR || itype[i]==C1LS ) {
hsn[TLREG]=0;
}
// Don't remove the miniht registers
if(itype[i]==UJUMP||itype[i]==RJUMP)
{
hsn[RHASH]=0;
hsn[RHTBL]=0;
}
}
// We only want to allocate registers if we're going to use them again soon
static int needed_again(int r, int i)
{
int j;
/*int b=-1;*/
int rn=10;
if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000))
{
if(ba[i-1]<start || ba[i-1]>start+slen*4-4)
return 0; // Don't need any registers if exiting the block
}
for(j=0;j<9;j++)
{
if(i+j>=slen) {
j=slen-i-1;
break;
}
if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
{
// Don't go past an unconditonal jump
j++;
break;
}
if(itype[i+j]==SYSCALL||((source[i+j]&0xfc00003f)==0x0d))
{
break;
}
}
for(;j>=1;j--)
{
if(rs1[i+j]==r) rn=j;
if(rs2[i+j]==r) rn=j;
if((unneeded_reg[i+j]>>r)&1) rn=10;
if(i+j>=0&&(itype[i+j]==UJUMP||itype[i+j]==CJUMP||itype[i+j]==SJUMP||itype[i+j]==FJUMP))
{
/*b=j;*/
}
}
/*
if(b>=0)
{
if(ba[i+b]>=start && ba[i+b]<(start+slen*4))
{
// Follow first branch
int o=rn;
int t=(ba[i+b]-start)>>2;
j=7-b;if(t+j>=slen) j=slen-t-1;
for(;j>=0;j--)
{
if(!((unneeded_reg[t+j]>>r)&1)) {
if(rs1[t+j]==r) if(rn>j+b+2) rn=j+b+2;
if(rs2[t+j]==r) if(rn>j+b+2) rn=j+b+2;
}
else rn=o;
}
}
}*/
if(rn<10) return 1;
return 0;
}
// Try to match register allocations at the end of a loop with those
// at the beginning
static int loop_reg(int i, int r, int hr)
{
int j,k;
for(j=0;j<9;j++)
{
if(i+j>=slen) {
j=slen-i-1;
break;
}
if(itype[i+j]==UJUMP||itype[i+j]==RJUMP||(source[i+j]>>16)==0x1000)
{
// Don't go past an unconditonal jump
j++;
break;
}
}
k=0;
if(i>0){
if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP)
k--;
}
for(;k<j;k++)
{
if(r<64&&((unneeded_reg[i+k]>>r)&1)) return hr;
if(r>64&&((unneeded_reg_upper[i+k]>>r)&1)) return hr;
if(i+k>=0&&(itype[i+k]==UJUMP||itype[i+k]==CJUMP||itype[i+k]==SJUMP||itype[i+k]==FJUMP))
{
if(ba[i+k]>=start && ba[i+k]<(start+i*4))
{
int t=(ba[i+k]-start)>>2;
int reg=get_reg(regs[t].regmap_entry,r);
if(reg>=0) return reg;
//reg=get_reg(regs[t+1].regmap_entry,r);
//if(reg>=0) return reg;
}
}
}
return hr;
}
// Basic liveness analysis for MIPS registers
static void unneeded_registers(int istart,int iend,int r)
{
int i;
uint64_t u,uu,b,bu;
uint64_t temp_u,temp_uu;
uint64_t tdep;
if(iend==slen-1) {
u=1;uu=1;
}else{
u=unneeded_reg[iend+1];
uu=unneeded_reg_upper[iend+1];
u=1;uu=1;
}
for (i=iend;i>=istart;i--)
{
//DebugMessage(M64MSG_VERBOSE, "unneeded registers i=%d (%d,%d) r=%d",i,istart,iend,r);
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
// If subroutine call, flag return address as a possible branch target
if(rt1[i]==31 && i<slen-2) bt[i+2]=1;
if(ba[i]<start || ba[i]>=(start+slen*4))
{
// Branch out of this block, flush all regs
u=1;
uu=1;
/* Hexagon hack
if(itype[i]==UJUMP&&rt1[i]==31)
{
uu=u=0x300C00F; // Discard at, v0-v1, t6-t9
}
if(itype[i]==RJUMP&&rs1[i]==31)
{
uu=u=0x300C0F3; // Discard at, a0-a3, t6-t9
}
if(start>0x80000400&&start<0x80800000) {
if(itype[i]==UJUMP&&rt1[i]==31)
{
//uu=u=0x30300FF0FLL; // Discard at, v0-v1, t0-t9, lo, hi
uu=u=0x300FF0F; // Discard at, v0-v1, t0-t9
}
if(itype[i]==RJUMP&&rs1[i]==31)
{
//uu=u=0x30300FFF3LL; // Discard at, a0-a3, t0-t9, lo, hi
uu=u=0x300FFF3; // Discard at, a0-a3, t0-t9
}
}*/
branch_unneeded_reg[i]=u;
branch_unneeded_reg_upper[i]=uu;
// Merge in delay slot
tdep=(~uu>>rt1[i+1])&1;
u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
u|=1;uu|=1;
// If branch is "likely" (and conditional)
// then we skip the delay slot on the fall-thru path
if(likely[i]) {
if(i<slen-1) {
u&=unneeded_reg[i+2];
uu&=unneeded_reg_upper[i+2];
}
else
{
u=1;
uu=1;
}
}
}
else
{
// Internal branch, flag target
bt[(ba[i]-start)>>2]=1;
if(ba[i]<=start+i*4) {
// Backward branch
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
temp_u=1;temp_uu=1;
} else {
// Conditional branch (not taken case)
temp_u=unneeded_reg[i+2];
temp_uu=unneeded_reg_upper[i+2];
}
// Merge in delay slot
tdep=(~temp_uu>>rt1[i+1])&1;
temp_u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
temp_uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
temp_u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
temp_uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
temp_uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
temp_u|=1;temp_uu|=1;
// If branch is "likely" (and conditional)
// then we skip the delay slot on the fall-thru path
if(likely[i]) {
if(i<slen-1) {
temp_u&=unneeded_reg[i+2];
temp_uu&=unneeded_reg_upper[i+2];
}
else
{
temp_u=1;
temp_uu=1;
}
}
tdep=(~temp_uu>>rt1[i])&1;
temp_u|=(1LL<<rt1[i])|(1LL<<rt2[i]);
temp_uu|=(1LL<<rt1[i])|(1LL<<rt2[i]);
temp_u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
temp_uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
temp_uu&=~((tdep<<dep1[i])|(tdep<<dep2[i]));
temp_u|=1;temp_uu|=1;
unneeded_reg[i]=temp_u;
unneeded_reg_upper[i]=temp_uu;
// Only go three levels deep. This recursion can take an
// excessive amount of time if there are a lot of nested loops.
if(r<2) {
unneeded_registers((ba[i]-start)>>2,i-1,r+1);
}else{
unneeded_reg[(ba[i]-start)>>2]=1;
unneeded_reg_upper[(ba[i]-start)>>2]=1;
}
} /*else*/ if(1) {
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
u=unneeded_reg[(ba[i]-start)>>2];
uu=unneeded_reg_upper[(ba[i]-start)>>2];
branch_unneeded_reg[i]=u;
branch_unneeded_reg_upper[i]=uu;
//u=1;
//uu=1;
//branch_unneeded_reg[i]=u;
//branch_unneeded_reg_upper[i]=uu;
// Merge in delay slot
tdep=(~uu>>rt1[i+1])&1;
u|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
uu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
u&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
uu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
u|=1;uu|=1;
} else {
// Conditional branch
b=unneeded_reg[(ba[i]-start)>>2];
bu=unneeded_reg_upper[(ba[i]-start)>>2];
branch_unneeded_reg[i]=b;
branch_unneeded_reg_upper[i]=bu;
//b=1;
//bu=1;
//branch_unneeded_reg[i]=b;
//branch_unneeded_reg_upper[i]=bu;
// Branch delay slot
tdep=(~uu>>rt1[i+1])&1;
b|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
bu|=(1LL<<rt1[i+1])|(1LL<<rt2[i+1]);
b&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
bu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
bu&=~((tdep<<dep1[i+1])|(tdep<<dep2[i+1]));
b|=1;bu|=1;
// If branch is "likely" then we skip the
// delay slot on the fall-thru path
if(likely[i]) {
u=b;
uu=bu;
if(i<slen-1) {
u&=unneeded_reg[i+2];
uu&=unneeded_reg_upper[i+2];
//u=1;
//uu=1;
}
} else {
u&=b;
uu&=bu;
//u=1;
//uu=1;
}
if(i<slen-1) {
branch_unneeded_reg[i]&=unneeded_reg[i+2];
branch_unneeded_reg_upper[i]&=unneeded_reg_upper[i+2];
//branch_unneeded_reg[i]=1;
//branch_unneeded_reg_upper[i]=1;
} else {
branch_unneeded_reg[i]=1;
branch_unneeded_reg_upper[i]=1;
}
}
}
}
}
else if(itype[i]==SYSCALL)
{
// SYSCALL instruction (software interrupt)
u=1;
uu=1;
}
else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
{
// ERET instruction (return from interrupt)
u=1;
uu=1;
}
//u=uu=1; // DEBUG
tdep=(~uu>>rt1[i])&1;
// Written registers are unneeded
u|=1LL<<rt1[i];
u|=1LL<<rt2[i];
uu|=1LL<<rt1[i];
uu|=1LL<<rt2[i];
// Accessed registers are needed
u&=~(1LL<<rs1[i]);
u&=~(1LL<<rs2[i]);
uu&=~(1LL<<us1[i]);
uu&=~(1LL<<us2[i]);
// Source-target dependencies
uu&=~(tdep<<dep1[i]);
uu&=~(tdep<<dep2[i]);
// R0 is always unneeded
u|=1;uu|=1;
// Save it
unneeded_reg[i]=u;
unneeded_reg_upper[i]=uu;
/*
DebugMessage(M64MSG_VERBOSE, "ur (%d,%d) %x: ",istart,iend,start+i*4);
DebugMessage(M64MSG_VERBOSE, "U:");
int r;
for(r=1;r<=CCREG;r++) {
if((unneeded_reg[i]>>r)&1) {
if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
DebugMessage(M64MSG_VERBOSE, " UU:");
for(r=1;r<=CCREG;r++) {
if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}*/
}
}
// Identify registers which are likely to contain 32-bit values
// This is used to predict whether any branches will jump to a
// location with 64-bit values in registers.
static void provisional_32bit(void)
{
int i,j;
uint64_t is32=1;
uint64_t lastbranch=1;
for(i=0;i<slen;i++)
{
if(i>0) {
if(itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP) {
if(i>1) is32=lastbranch;
else is32=1;
}
}
if(i>1)
{
if(itype[i-2]==CJUMP||itype[i-2]==SJUMP||itype[i-2]==FJUMP) {
if(likely[i-2]) {
if(i>2) is32=lastbranch;
else is32=1;
}
}
if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
{
if(rs1[i-2]==0||rs2[i-2]==0)
{
if(rs1[i-2]) {
is32|=1LL<<rs1[i-2];
}
if(rs2[i-2]) {
is32|=1LL<<rs2[i-2];
}
}
}
}
// If something jumps here with 64-bit values
// then promote those registers to 64 bits
if(bt[i])
{
uint64_t temp_is32=is32;
for(j=i-1;j>=0;j--)
{
if(ba[j]==start+i*4)
//temp_is32&=branch_regs[j].is32;
temp_is32&=p32[j];
}
for(j=i;j<slen;j++)
{
if(ba[j]==start+i*4)
temp_is32=1;
}
is32=temp_is32;
}
int type=itype[i];
int op=opcode[i];
int op2=opcode2[i];
int rt=rt1[i];
int s1=rs1[i];
int s2=rs2[i];
if(type==UJUMP||type==RJUMP||type==CJUMP||type==SJUMP||type==FJUMP) {
// Branches don't write registers, consider the delay slot instead.
type=itype[i+1];
op=opcode[i+1];
op2=opcode2[i+1];
rt=rt1[i+1];
s1=rs1[i+1];
s2=rs2[i+1];
lastbranch=is32;
}
switch(type) {
case LOAD:
if(opcode[i]==0x27||opcode[i]==0x37|| // LWU/LD
opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
is32&=~(1LL<<rt);
else
is32|=1LL<<rt;
break;
case STORE:
case STORELR:
break;
case LOADLR:
if(op==0x1a||op==0x1b) is32&=~(1LL<<rt); // LDR/LDL
if(op==0x22) is32|=1LL<<rt; // LWL
break;
case IMM16:
if (op==0x08||op==0x09|| // ADDI/ADDIU
op==0x0a||op==0x0b|| // SLTI/SLTIU
op==0x0c|| // ANDI
op==0x0f) // LUI
{
is32|=1LL<<rt;
}
if(op==0x18||op==0x19) { // DADDI/DADDIU
is32&=~(1LL<<rt);
//if(imm[i]==0)
// is32|=((is32>>s1)&1LL)<<rt;
}
if(op==0x0d||op==0x0e) { // ORI/XORI
uint64_t sr=((is32>>s1)&1LL);
is32&=~(1LL<<rt);
is32|=sr<<rt;
}
break;
case UJUMP:
break;
case RJUMP:
break;
case CJUMP:
break;
case SJUMP:
break;
case FJUMP:
break;
case ALU:
if(op2>=0x20&&op2<=0x23) { // ADD/ADDU/SUB/SUBU
is32|=1LL<<rt;
}
if(op2==0x2a||op2==0x2b) { // SLT/SLTU
is32|=1LL<<rt;
}
else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
uint64_t sr=((is32>>s1)&(is32>>s2)&1LL);
is32&=~(1LL<<rt);
is32|=sr<<rt;
}
else if(op2>=0x2c&&op2<=0x2d) { // DADD/DADDU
if(s1==0&&s2==0) {
is32|=1LL<<rt;
}
else if(s2==0) {
uint64_t sr=((is32>>s1)&1LL);
is32&=~(1LL<<rt);
is32|=sr<<rt;
}
else if(s1==0) {
uint64_t sr=((is32>>s2)&1LL);
is32&=~(1LL<<rt);
is32|=sr<<rt;
}
else {
is32&=~(1LL<<rt);
}
}
else if(op2>=0x2e&&op2<=0x2f) { // DSUB/DSUBU
if(s1==0&&s2==0) {
is32|=1LL<<rt;
}
else if(s2==0) {
uint64_t sr=((is32>>s1)&1LL);
is32&=~(1LL<<rt);
is32|=sr<<rt;
}
else {
is32&=~(1LL<<rt);
}
}
break;
case MULTDIV:
if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
is32&=~((1LL<<HIREG)|(1LL<<LOREG));
}
else {
is32|=(1LL<<HIREG)|(1LL<<LOREG);
}
break;
case MOV:
{
uint64_t sr=((is32>>s1)&1LL);
is32&=~(1LL<<rt);
is32|=sr<<rt;
}
break;
case SHIFT:
if(op2>=0x14&&op2<=0x17) is32&=~(1LL<<rt); // DSLLV/DSRLV/DSRAV
else is32|=1LL<<rt; // SLLV/SRLV/SRAV
break;
case SHIFTIMM:
is32|=1LL<<rt;
// DSLL/DSRL/DSRA/DSLL32/DSRL32 but not DSRA32 have 64-bit result
if(op2>=0x38&&op2<0x3f) is32&=~(1LL<<rt);
break;
case COP0:
if(op2==0) is32|=1LL<<rt; // MFC0
break;
case COP1:
if(op2==0) is32|=1LL<<rt; // MFC1
if(op2==1) is32&=~(1LL<<rt); // DMFC1
if(op2==2) is32|=1LL<<rt; // CFC1
break;
case C1LS:
break;
case FLOAT:
case FCONV:
break;
case FCOMP:
break;
case SYSCALL:
break;
default:
break;
}
is32|=1;
p32[i]=is32;
if(i>0)
{
if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
{
if(rt1[i-1]==31) // JAL/JALR
{
// Subroutine call will return here, don't alloc any registers
is32=1;
}
else if(i+1<slen)
{
// Internal branch will jump here, match registers to caller
is32=0x3FFFFFFFFLL;
}
}
}
}
}
// Identify registers which may be assumed to contain 32-bit values
// and where optimizations will rely on this.
// This is used to determine whether backward branches can safely
// jump to a location with 64-bit values in registers.
static void provisional_r32(void)
{
u_int r32=0;
int i;
for (i=slen-1;i>=0;i--)
{
int hr;
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(ba[i]<start || ba[i]>=(start+slen*4))
{
// Branch out of this block, don't need anything
r32=0;
}
else
{
// Internal branch
// Need whatever matches the target
// (and doesn't get overwritten by the delay slot instruction)
r32=0;
int t=(ba[i]-start)>>2;
if(ba[i]>start+i*4) {
// Forward branch
//if(!(requires_32bit[t]&~regs[i].was32))
// r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
if(!(pr32[t]&~regs[i].was32))
r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
}else{
// Backward branch
if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
}
}
// Conditional branch may need registers for following instructions
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
{
if(i<slen-2) {
//r32|=requires_32bit[i+2];
r32|=pr32[i+2];
r32&=regs[i].was32;
// Mark this address as a branch target since it may be called
// upon return from interrupt
//bt[i+2]=1;
}
}
// Merge in delay slot
if(!likely[i]) {
// These are overwritten unless the branch is "likely"
// and the delay slot is nullified if not taken
r32&=~(1LL<<rt1[i+1]);
r32&=~(1LL<<rt2[i+1]);
}
// Assume these are needed (delay slot)
if(us1[i+1]>0)
{
if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
}
if(us2[i+1]>0)
{
if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
}
if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
{
if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
}
if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
{
if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
}
}
else if(itype[i]==SYSCALL)
{
// SYSCALL instruction (software interrupt)
r32=0;
}
else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
{
// ERET instruction (return from interrupt)
r32=0;
}
// Check 32 bits
r32&=~(1LL<<rt1[i]);
r32&=~(1LL<<rt2[i]);
if(us1[i]>0)
{
if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
}
if(us2[i]>0)
{
if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
}
if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
{
if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
}
if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
{
if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
}
//requires_32bit[i]=r32;
pr32[i]=r32;
// Dirty registers which are 32-bit, require 32-bit input
// as they will be written as 32-bit values
for(hr=0;hr<HOST_REGS;hr++)
{
if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
pr32[i]|=1LL<<regs[i].regmap_entry[hr];
//requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
}
}
}
}
}
// Write back dirty registers as soon as we will no longer modify them,
// so that we don't end up with lots of writes at the branches.
static void clean_registers(int istart,int iend,int wr)
{
int i;
int r;
u_int will_dirty_i,will_dirty_next,temp_will_dirty;
u_int wont_dirty_i,wont_dirty_next,temp_wont_dirty;
if(iend==slen-1) {
will_dirty_i=will_dirty_next=0;
wont_dirty_i=wont_dirty_next=0;
}else{
will_dirty_i=will_dirty_next=will_dirty[iend+1];
wont_dirty_i=wont_dirty_next=wont_dirty[iend+1];
}
for (i=iend;i>=istart;i--)
{
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(ba[i]<start || ba[i]>=(start+slen*4))
{
// Branch out of this block, flush all regs
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
will_dirty_i=0;
wont_dirty_i=0;
// Merge in delay slot (will dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
}
}
}
else
{
// Conditional branch
will_dirty_i=0;
wont_dirty_i=wont_dirty_next;
// Merge in delay slot (will dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(!likely[i]) {
// Might not dirty if likely branch is not taken
if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==0) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
//if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
//if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
}
}
}
}
// Merge in delay slot (wont dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
}
}
if(wr) {
#ifndef DESTRUCTIVE_WRITEBACK
branch_regs[i].dirty&=wont_dirty_i;
#endif
branch_regs[i].dirty|=will_dirty_i;
}
}
else
{
// Internal branch
if(ba[i]<=start+i*4) {
// Backward branch
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
temp_will_dirty=0;
temp_wont_dirty=0;
// Merge in delay slot (will dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
if(branch_regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
}
}
} else {
// Conditional branch (not taken case)
temp_will_dirty=will_dirty_next;
temp_wont_dirty=wont_dirty_next;
// Merge in delay slot (will dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(!likely[i]) {
// Will not dirty if likely branch is not taken
if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
if(branch_regs[i].regmap[r]==0) temp_will_dirty&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
//if((regs[i].regmap[r]&63)==rt1[i]) temp_will_dirty|=1<<r;
//if((regs[i].regmap[r]&63)==rt2[i]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) temp_will_dirty|=1<<r;
if((regs[i].regmap[r]&63)>33) temp_will_dirty&=~(1<<r);
if(regs[i].regmap[r]<=0) temp_will_dirty&=~(1<<r);
if(regs[i].regmap[r]==CCREG) temp_will_dirty|=1<<r;
}
}
}
}
// Merge in delay slot (wont dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
if(regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i]) temp_wont_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) temp_wont_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) temp_wont_dirty|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) temp_wont_dirty|=1<<r;
if(branch_regs[i].regmap[r]==CCREG) temp_wont_dirty|=1<<r;
}
}
// Deal with changed mappings
if(i<iend) {
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(regs[i].regmap[r]!=regmap_pre[i][r]) {
temp_will_dirty&=~(1<<r);
temp_wont_dirty&=~(1<<r);
if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
temp_will_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
temp_wont_dirty|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
} else {
temp_will_dirty|=1<<r;
temp_wont_dirty|=1<<r;
}
}
}
}
}
if(wr) {
will_dirty[i]=temp_will_dirty;
wont_dirty[i]=temp_wont_dirty;
clean_registers((ba[i]-start)>>2,i-1,0);
}else{
// Limit recursion. It can take an excessive amount
// of time if there are a lot of nested loops.
will_dirty[(ba[i]-start)>>2]=0;
wont_dirty[(ba[i]-start)>>2]=-1;
}
}
/*else*/ if(1)
{
if(itype[i]==RJUMP||itype[i]==UJUMP||(source[i]>>16)==0x1000)
{
// Unconditional branch
will_dirty_i=0;
wont_dirty_i=0;
//if(ba[i]>start+i*4) { // Disable recursion (for debugging)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(branch_regs[i].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
will_dirty_i|=will_dirty[(ba[i]-start)>>2]&(1<<r);
wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
}
if(branch_regs[i].regmap[r]>=0) {
will_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(branch_regs[i].regmap[r]&63))&1)<<r;
}
}
}
//}
// Merge in delay slot
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
}
}
} else {
// Conditional branch
will_dirty_i=will_dirty_next;
wont_dirty_i=wont_dirty_next;
//if(ba[i]>start+i*4) { // Disable recursion (for debugging)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
signed char target_reg=branch_regs[i].regmap[r];
if(target_reg==regs[(ba[i]-start)>>2].regmap_entry[r]) {
will_dirty_i&=will_dirty[(ba[i]-start)>>2]&(1<<r);
wont_dirty_i|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
}
else if(target_reg>=0) {
will_dirty_i&=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
wont_dirty_i|=((unneeded_reg[(ba[i]-start)>>2]>>(target_reg&63))&1)<<r;
}
// Treat delay slot as part of branch too
/*if(regs[i+1].regmap[r]==regs[(ba[i]-start)>>2].regmap_entry[r]) {
will_dirty[i+1]&=will_dirty[(ba[i]-start)>>2]&(1<<r);
wont_dirty[i+1]|=wont_dirty[(ba[i]-start)>>2]&(1<<r);
}
else
{
will_dirty[i+1]&=~(1<<r);
}*/
}
}
//}
// Merge in delay slot
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(!likely[i]) {
// Might not dirty if likely branch is not taken
if((branch_regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(branch_regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
//if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
//if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
}
}
}
}
// Merge in delay slot (won't dirty)
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt1[i+1]) wont_dirty_i|=1<<r;
if((branch_regs[i].regmap[r]&63)==rt2[i+1]) wont_dirty_i|=1<<r;
if(branch_regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
}
}
if(wr) {
#ifndef DESTRUCTIVE_WRITEBACK
branch_regs[i].dirty&=wont_dirty_i;
#endif
branch_regs[i].dirty|=will_dirty_i;
}
}
}
}
else if(itype[i]==SYSCALL)
{
// SYSCALL instruction (software interrupt)
will_dirty_i=0;
wont_dirty_i=0;
}
else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
{
// ERET instruction (return from interrupt)
will_dirty_i=0;
wont_dirty_i=0;
}
will_dirty_next=will_dirty_i;
wont_dirty_next=wont_dirty_i;
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if((regs[i].regmap[r]&63)==rt1[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)>33) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]<=0) will_dirty_i&=~(1<<r);
if(regs[i].regmap[r]==CCREG) will_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt1[i]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i]) wont_dirty_i|=1<<r;
if(regs[i].regmap[r]==CCREG) wont_dirty_i|=1<<r;
if(i>istart) {
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=FJUMP)
{
// Don't store a register immediately after writing it,
// may prevent dual-issue.
if((regs[i].regmap[r]&63)==rt1[i-1]) wont_dirty_i|=1<<r;
if((regs[i].regmap[r]&63)==rt2[i-1]) wont_dirty_i|=1<<r;
}
}
}
}
// Save it
will_dirty[i]=will_dirty_i;
wont_dirty[i]=wont_dirty_i;
// Mark registers that won't be dirtied as not dirty
if(wr) {
/*DebugMessage(M64MSG_VERBOSE, "wr (%d,%d) %x will:",istart,iend,start+i*4);
for(r=0;r<HOST_REGS;r++) {
if((will_dirty_i>>r)&1) {
DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}*/
//if(i==istart||(itype[i-1]!=RJUMP&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=FJUMP)) {
regs[i].dirty|=will_dirty_i;
#ifndef DESTRUCTIVE_WRITEBACK
regs[i].dirty&=wont_dirty_i;
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(i<iend-1&&itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(regs[i].regmap[r]==regmap_pre[i+2][r]) {
regs[i+2].wasdirty&=wont_dirty_i|~(1<<r);
}else {/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch(+2): %d",start+i*4,i,r); / *assert(!((wont_dirty_i>>r)&1));*/}
}
}
}
}
else
{
if(i<iend) {
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
if(regs[i].regmap[r]==regmap_pre[i+1][r]) {
regs[i+1].wasdirty&=wont_dirty_i|~(1<<r);
}else {/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch(+1): %d",start+i*4,i,r);/ *assert(!((wont_dirty_i>>r)&1));*/}
}
}
}
}
#endif
//}
}
// Deal with changed mappings
temp_will_dirty=will_dirty_i;
temp_wont_dirty=wont_dirty_i;
for(r=0;r<HOST_REGS;r++) {
if(r!=EXCLUDE_REG) {
int nr;
if(regs[i].regmap[r]==regmap_pre[i][r]) {
if(wr) {
#ifndef DESTRUCTIVE_WRITEBACK
regs[i].wasdirty&=wont_dirty_i|~(1<<r);
#endif
regs[i].wasdirty|=will_dirty_i&(1<<r);
}
}
else if((nr=get_reg(regs[i].regmap,regmap_pre[i][r]))>=0) {
// Register moved to a different register
will_dirty_i&=~(1<<r);
wont_dirty_i&=~(1<<r);
will_dirty_i|=((temp_will_dirty>>nr)&1)<<r;
wont_dirty_i|=((temp_wont_dirty>>nr)&1)<<r;
if(wr) {
#ifndef DESTRUCTIVE_WRITEBACK
regs[i].wasdirty&=wont_dirty_i|~(1<<r);
#endif
regs[i].wasdirty|=will_dirty_i&(1<<r);
}
}
else {
will_dirty_i&=~(1<<r);
wont_dirty_i&=~(1<<r);
if((regmap_pre[i][r]&63)>0 && (regmap_pre[i][r]&63)<34) {
will_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
wont_dirty_i|=((unneeded_reg[i]>>(regmap_pre[i][r]&63))&1)<<r;
} else {
wont_dirty_i|=1<<r;
/*DebugMessage(M64MSG_VERBOSE, "i: %x (%d) mismatch: %d",start+i*4,i,r);/ *assert(!((will_dirty>>r)&1));*/
}
}
}
}
}
}
// Allocate every register, preserving source/target regs
static void alloc_all(struct regstat *cur,int i)
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(((cur->regmap[hr]&63)!=rs1[i])&&((cur->regmap[hr]&63)!=rs2[i])&&
((cur->regmap[hr]&63)!=rt1[i])&&((cur->regmap[hr]&63)!=rt2[i]))
{
cur->regmap[hr]=-1;
cur->dirty&=~(1<<hr);
}
// Don't need zeros
if((cur->regmap[hr]&63)==0)
{
cur->regmap[hr]=-1;
cur->dirty&=~(1<<hr);
}
}
}
}
static void add_to_linker(int addr,int target,int ext)
{
link_addr[linkcount][0]=addr;
link_addr[linkcount][1]=target;
link_addr[linkcount][2]=ext;
linkcount++;
}
static void add_stub(int type,int addr,int retaddr,int a,int b,int c,int d,int e)
{
stubs[stubcount][0]=type;
stubs[stubcount][1]=addr;
stubs[stubcount][2]=retaddr;
stubs[stubcount][3]=a;
stubs[stubcount][4]=b;
stubs[stubcount][5]=c;
stubs[stubcount][6]=d;
stubs[stubcount][7]=e;
stubcount++;
}
static void remove_hash(int vaddr)
{
//DebugMessage(M64MSG_VERBOSE, "remove hash: %x",vaddr);
u_int *ht_bin=hash_table[(((vaddr)>>16)^vaddr)&0xFFFF];
if(ht_bin[2]==vaddr) {
ht_bin[2]=ht_bin[3]=-1;
}
if(ht_bin[0]==vaddr) {
ht_bin[0]=ht_bin[2];
ht_bin[1]=ht_bin[3];
ht_bin[2]=ht_bin[3]=-1;
}
}
#if NEW_DYNAREC == NEW_DYNAREC_X86
#include "x86/assem_x86.c"
#elif NEW_DYNAREC == NEW_DYNAREC_ARM
#include "arm/assem_arm.c"
#else
#error Unsupported dynarec architecture
#endif
static void tlb_hacks()
{
// Goldeneye hack
if (strncmp((char *) ROM_HEADER.Name, "GOLDENEYE",9) == 0)
{
u_int addr;
int n;
switch (ROM_HEADER.Country_code&0xFF)
{
case 0x45: // U
addr=0x34b30;
break;
case 0x4A: // J
addr=0x34b70;
break;
case 0x50: // E
addr=0x329f0;
break;
default:
// Unknown country code
addr=0;
break;
}
u_int rom_addr=(u_int)g_dev.pi.cart_rom.rom;
#ifdef ROM_COPY
// Since memory_map is 32-bit, on 64-bit systems the rom needs to be
// in the lower 4G of memory to use this hack. Copy it if necessary.
if((void *)g_dev.pi.cart_rom.rom>(void *)0xffffffff) {
munmap(ROM_COPY, 67108864);
if(mmap(ROM_COPY, 12582912,
PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
memcpy(ROM_COPY,g_dev.pi.cart_rom.rom,12582912);
rom_addr=(u_int)ROM_COPY;
}
#endif
if(addr) {
for(n=0x7F000;n<0x80000;n++) {
memory_map[n]=(((u_int)(rom_addr+addr-0x7F000000))>>2)|0x40000000;
}
}
}
}
// Add virtual address mapping to linked list
static void ll_add(struct ll_entry **head,int vaddr,void *addr)
{
struct ll_entry *new_entry;
new_entry=(struct ll_entry *)malloc(sizeof(struct ll_entry));
assert(new_entry!=NULL);
new_entry->vaddr=vaddr;
new_entry->reg32=0;
new_entry->addr=addr;
new_entry->next=*head;
*head=new_entry;
}
// Add virtual address mapping for 32-bit compiled block
static void ll_add_32(struct ll_entry **head,int vaddr,u_int reg32,void *addr)
{
struct ll_entry *new_entry;
new_entry=(struct ll_entry *)malloc(sizeof(struct ll_entry));
assert(new_entry!=NULL);
new_entry->vaddr=vaddr;
new_entry->reg32=reg32;
new_entry->addr=addr;
new_entry->next=*head;
*head=new_entry;
}
static void ll_remove_matching_addrs(struct ll_entry **head,int addr,int shift)
{
struct ll_entry **cur=head;
struct ll_entry *next;
while(*cur) {
if((((u_int)((*cur)->addr)-(u_int)base_addr)>>shift)==((addr-(u_int)base_addr)>>shift) ||
(((u_int)((*cur)->addr)-(u_int)base_addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==((addr-(u_int)base_addr)>>shift))
{
if(head>=jump_dirty&&head<(jump_dirty+4096)){
u_int copy,length;
get_copy_addr((*cur)->addr,&copy,&length);
u_int* ptr=(u_int*)copy;
ptr[length>>2]--;
if(ptr[length>>2]==0){
free(ptr);
copy_size-=length+4;
}
}
inv_debug("EXP: Remove pointer to %x (%x)\n",(int)(*cur)->addr,(*cur)->vaddr);
remove_hash((*cur)->vaddr);
next=(*cur)->next;
free(*cur);
*cur=next;
}
else
{
cur=&((*cur)->next);
}
}
}
// Remove all entries from linked list
static void ll_clear(struct ll_entry **head)
{
struct ll_entry *cur;
struct ll_entry *next;
if((cur=*head)) {
*head=0;
while(cur) {
if(head>=jump_dirty&&head<(jump_dirty+4096)){
u_int copy,length;
get_copy_addr(cur->addr,&copy,&length);
u_int* ptr=(u_int*)copy;
ptr[length>>2]--;
if(ptr[length>>2]==0){
free(ptr);
copy_size-=length+4;
}
}
next=cur->next;
free(cur);
cur=next;
}
}
}
// Dereference the pointers and remove if it matches
static void ll_kill_pointers(struct ll_entry *head,int addr,int shift)
{
while(head) {
u_int ptr=get_pointer(head->addr);
inv_debug("EXP: Lookup pointer to %x at %x (%x)\n",(int)ptr,(int)head->addr,head->vaddr);
if((((ptr-(u_int)base_addr)>>shift)==((addr-(u_int)base_addr)>>shift)) ||
(((ptr-(u_int)base_addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==((addr-(u_int)base_addr)>>shift)))
{
inv_debug("EXP: Kill pointer at %x (%x)\n",(int)head->addr,head->vaddr);
u_int host_addr=(int)kill_pointer(head->addr);
#if NEW_DYNAREC == NEW_DYNAREC_ARM
needs_clear_cache[(host_addr-(u_int)base_addr)>>17]|=1<<(((host_addr-(u_int)base_addr)>>12)&31);
#else
/* avoid unused variable warning */
(void)host_addr;
#endif
}
head=head->next;
}
}
// Add an entry to jump_out after making a link
static void add_link(u_int vaddr,void *src)
{
u_int page=(vaddr^0x80000000)>>12;
if(page>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) page=(g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]^0x80000000)>>12;
if(page>4095) page=2048+(page&2047);
inv_debug("add_link: %x -> %x (%d)\n",(int)src,vaddr,page);
ll_add(jump_out+page,vaddr,src);
//int ptr=get_pointer(src);
//inv_debug("add_link: Pointer is to %x\n",(int)ptr);
}
static void *dynamic_linker(void * src, u_int vaddr)
{
u_int page=(vaddr^0x80000000)>>12;
u_int vpage=page;
if(page>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) page=(g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]^0x80000000)>>12;
if(page>2048) page=2048+(page&2047);
if(vpage>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
if(vpage>2048) vpage=2048+(vpage&2047);
struct ll_entry *head;
head=jump_in[page];
while(head!=NULL) {
if(head->vaddr==vaddr&&head->reg32==0) {
add_link(vaddr, add_pointer(src,head->addr));
return head->addr;
}
head=head->next;
}
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
head=jump_dirty[vpage];
while(head!=NULL) {
if(head->vaddr==vaddr&&head->reg32==0) {
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match dirty %x: %x)",r4300_cp0_regs()[CP0_COUNT_REG],*r4300_cp0_next_interrupt(),vaddr,(int)head->addr);
// Don't restore blocks which are about to expire from the cache
if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
if(verify_dirty(head->addr)) {
//DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,g_dev.r4300.cached_interp.invalid_code[vaddr>>12]);
g_dev.r4300.cached_interp.invalid_code[vaddr>>12]=0;
memory_map[vaddr>>12]|=0x40000000;
if(vpage<2048) {
if(g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) {
g_dev.r4300.cached_interp.invalid_code[g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]>>12]=0;
memory_map[g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]>>12]|=0x40000000;
}
restore_candidate[vpage>>3]|=1<<(vpage&7);
}
else restore_candidate[page>>3]|=1<<(page&7);
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) {
ht_bin[1]=(int)head->addr; // Replace existing entry
}
else
{
ht_bin[3]=ht_bin[1];
ht_bin[2]=ht_bin[0];
ht_bin[1]=(int)head->addr;
ht_bin[0]=vaddr;
}
return (void*)get_clean_addr((int)head->addr);
}
}
}
head=head->next;
}
return NULL;
}
static void *dyna_linker(void * src, u_int vaddr)
{
assert((vaddr&1)==0);
void *addr=dynamic_linker(src,vaddr);
if(addr==NULL)
{
if(new_recompile_block(vaddr)==0)
{
addr=dynamic_linker(src,vaddr);
assert(addr!=NULL);
}
else
addr=TLB_refill_exception_new(vaddr,vaddr&~1,0);
}
return addr;
}
static void *dyna_linker_ds(void * src, u_int vaddr)
{
void *addr=dynamic_linker(src,vaddr);
if(addr==NULL)
{
if(new_recompile_block((vaddr&0xFFFFFFF8)+1)==0)
{
addr=dynamic_linker(src,vaddr);
assert(addr!=NULL);
}
else
addr=TLB_refill_exception_new(vaddr,vaddr&~1,0);
}
return addr;
}
// Get address from virtual address
// This is called from the recompiled JR/JALR instructions
void *get_addr(u_int vaddr)
{
u_int page=(vaddr^0x80000000)>>12;
u_int vpage=page;
if(page>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) page=(g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]^0x80000000)>>12;
if(page>2048) page=2048+(page&2047);
if(vpage>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
if(vpage>2048) vpage=2048+(vpage&2047);
struct ll_entry *head;
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr %x,page %d)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr,page);
head=jump_in[page];
while(head!=NULL) {
if(head->vaddr==vaddr&&head->reg32==0) {
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match %x: %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr,(int)head->addr);
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
ht_bin[3]=ht_bin[1];
ht_bin[2]=ht_bin[0];
ht_bin[1]=(int)head->addr;
ht_bin[0]=vaddr;
return head->addr;
}
head=head->next;
}
head=jump_dirty[vpage];
while(head!=NULL) {
if(head->vaddr==vaddr&&head->reg32==0) {
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr match dirty %x: %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr,(int)head->addr);
// Don't restore blocks which are about to expire from the cache
if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
if(verify_dirty(head->addr)) {
//DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,g_dev.r4300.cached_interp.invalid_code[vaddr>>12]);
g_dev.r4300.cached_interp.invalid_code[vaddr>>12]=0;
memory_map[vaddr>>12]|=0x40000000;
if(vpage<2048) {
if(g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) {
g_dev.r4300.cached_interp.invalid_code[g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]>>12]=0;
memory_map[g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]>>12]|=0x40000000;
}
restore_candidate[vpage>>3]|=1<<(vpage&7);
}
else restore_candidate[page>>3]|=1<<(page&7);
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) {
ht_bin[1]=(int)head->addr; // Replace existing entry
}
else
{
ht_bin[3]=ht_bin[1];
ht_bin[2]=ht_bin[0];
ht_bin[1]=(int)head->addr;
ht_bin[0]=vaddr;
}
return (void*)get_clean_addr((int)head->addr);
}
}
}
head=head->next;
}
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr no-match %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr);
int r=new_recompile_block(vaddr);
if(r==0) return get_addr(vaddr);
// Execute in unmapped page, generate pagefault execption
return TLB_refill_exception_new(vaddr,vaddr&~1,0);
}
// Look up address in hash table first
void *get_addr_ht(u_int vaddr)
{
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_ht %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr);
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
return get_addr(vaddr);
}
void *get_addr_32(u_int vaddr,u_int flags)
{
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 %x,flags %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr,flags);
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) return (void *)ht_bin[1];
if(ht_bin[2]==vaddr) return (void *)ht_bin[3];
u_int page=(vaddr^0x80000000)>>12;
u_int vpage=page;
if(page>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) page=(g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]^0x80000000)>>12;
if(page>2048) page=2048+(page&2047);
if(vpage>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
if(vpage>2048) vpage=2048+(vpage&2047);
struct ll_entry *head;
head=jump_in[page];
while(head!=NULL) {
if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 match %x: %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr,(int)head->addr);
if(head->reg32==0) {
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==-1) {
ht_bin[1]=(int)head->addr;
ht_bin[0]=vaddr;
}else if(ht_bin[2]==-1) {
ht_bin[3]=(int)head->addr;
ht_bin[2]=vaddr;
}
//ht_bin[3]=ht_bin[1];
//ht_bin[2]=ht_bin[0];
//ht_bin[1]=(int)head->addr;
//ht_bin[0]=vaddr;
}
return head->addr;
}
head=head->next;
}
head=jump_dirty[vpage];
while(head!=NULL) {
if(head->vaddr==vaddr&&(head->reg32&flags)==0) {
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 match dirty %x: %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr,(int)head->addr);
// Don't restore blocks which are about to expire from the cache
if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
if(verify_dirty(head->addr)) {
//DebugMessage(M64MSG_VERBOSE, "restore candidate: %x (%d) d=%d",vaddr,page,g_dev.r4300.cached_interp.invalid_code[vaddr>>12]);
g_dev.r4300.cached_interp.invalid_code[vaddr>>12]=0;
memory_map[vaddr>>12]|=0x40000000;
if(vpage<2048) {
if(g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) {
g_dev.r4300.cached_interp.invalid_code[g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]>>12]=0;
memory_map[g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]>>12]|=0x40000000;
}
restore_candidate[vpage>>3]|=1<<(vpage&7);
}
else restore_candidate[page>>3]|=1<<(page&7);
if(head->reg32==0) {
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==-1) {
ht_bin[1]=(int)head->addr;
ht_bin[0]=vaddr;
}else if(ht_bin[2]==-1) {
ht_bin[3]=(int)head->addr;
ht_bin[2]=vaddr;
}
//ht_bin[3]=ht_bin[1];
//ht_bin[2]=ht_bin[0];
//ht_bin[1]=(int)head->addr;
//ht_bin[0]=vaddr;
}
return (void*)get_clean_addr((int)head->addr);
}
}
}
head=head->next;
}
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (get_addr_32 no-match %x,flags %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,vaddr,flags);
int r=new_recompile_block(vaddr);
if(r==0) return get_addr(vaddr);
// Execute in unmapped page, generate pagefault execption
return TLB_refill_exception_new(vaddr,vaddr&~1,0);
}
void *TLB_refill_exception_new(u_int inst_addr,u_int mem_addr,int w)
{
int i;
uint32_t* cp0_regs = r4300_cp0_regs();
if(w==1)
cp0_regs[CP0_CAUSE_REG]=(inst_addr<<31)|CP0_CAUSE_EXCCODE_TLBS;
else
cp0_regs[CP0_CAUSE_REG]=(inst_addr<<31)|CP0_CAUSE_EXCCODE_TLBL;
cp0_regs[CP0_BADVADDR_REG]=mem_addr;
cp0_regs[CP0_CONTEXT_REG]=(cp0_regs[CP0_CONTEXT_REG]&0xFF80000F)|((mem_addr>>9)&0x007FFFF0);
cp0_regs[CP0_ENTRYHI_REG]=mem_addr&0xFFFFE000;
assert((cp0_regs[CP0_STATUS_REG]&CP0_STATUS_EXL)==0);
cp0_regs[CP0_EPC_REG]=(inst_addr&~3)-(inst_addr&1)*4;
cp0_regs[CP0_STATUS_REG]|=CP0_STATUS_EXL;
if((mem_addr>=0x80000000)&&(mem_addr<0xc0000000))
return get_addr_ht(0x80000180);
for(i=0;i<32;i++)
{
if((mem_addr>=g_dev.r4300.cp0.tlb.entries[i].start_even)&&(mem_addr<=g_dev.r4300.cp0.tlb.entries[i].end_even))
return get_addr_ht(0x80000180);
if((mem_addr>=g_dev.r4300.cp0.tlb.entries[i].start_odd)&&(mem_addr<=g_dev.r4300.cp0.tlb.entries[i].end_odd))
return get_addr_ht(0x80000180);
}
return get_addr_ht(0x80000000);
}
// Check if an address is already compiled
// but don't return addresses which are about to expire from the cache
static void *check_addr(u_int vaddr)
{
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) {
if(((ht_bin[1]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
if(isclean(ht_bin[1])) return (void *)ht_bin[1];
}
if(ht_bin[2]==vaddr) {
if(((ht_bin[3]-MAX_OUTPUT_BLOCK_SIZE-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2)))
if(isclean(ht_bin[3])) return (void *)ht_bin[3];
}
u_int page=(vaddr^0x80000000)>>12;
if(page>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) page=(g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]^0x80000000)>>12;
if(page>2048) page=2048+(page&2047);
struct ll_entry *head;
head=jump_in[page];
while(head!=NULL) {
if(head->vaddr==vaddr&&head->reg32==0) {
if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
// Update existing entry with current address
if(ht_bin[0]==vaddr) {
ht_bin[1]=(int)head->addr;
return head->addr;
}
if(ht_bin[2]==vaddr) {
ht_bin[3]=(int)head->addr;
return head->addr;
}
// Insert into hash table with low priority.
// Don't evict existing entries, as they are probably
// addresses that are being accessed frequently.
if(ht_bin[0]==-1) {
ht_bin[1]=(int)head->addr;
ht_bin[0]=vaddr;
}else if(ht_bin[2]==-1) {
ht_bin[3]=(int)head->addr;
ht_bin[2]=vaddr;
}
return head->addr;
}
}
head=head->next;
}
return 0;
}
// This is called when we write to a compiled block (see do_invstub)
static void invalidate_page(u_int page)
{
struct ll_entry *head;
struct ll_entry *next;
head=jump_in[page];
jump_in[page]=0;
while(head!=NULL) {
inv_debug("INVALIDATE: %x\n",head->vaddr);
remove_hash(head->vaddr);
next=head->next;
free(head);
head=next;
}
head=jump_out[page];
jump_out[page]=0;
while(head!=NULL) {
inv_debug("INVALIDATE: kill pointer to %x (%x)\n",head->vaddr,(int)head->addr);
u_int host_addr=(int)kill_pointer(head->addr);
#if NEW_DYNAREC == NEW_DYNAREC_ARM
needs_clear_cache[(host_addr-(u_int)base_addr)>>17]|=1<<(((host_addr-(u_int)base_addr)>>12)&31);
#else
/* avoid unused variable warning */
(void)host_addr;
#endif
next=head->next;
free(head);
head=next;
}
}
void invalidate_block(u_int block)
{
u_int page,vpage;
page=vpage=block^0x80000;
if(page>262143&&g_dev.r4300.cp0.tlb.LUT_r[block]) page=(g_dev.r4300.cp0.tlb.LUT_r[block]^0x80000000)>>12;
if(page>2048) page=2048+(page&2047);
if(vpage>262143&&g_dev.r4300.cp0.tlb.LUT_r[block]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
if(vpage>2048) vpage=2048+(vpage&2047);
inv_debug("INVALIDATE: %x (%d)\n",block<<12,page);
//inv_debug("invalid_code[block]=%d\n",g_dev.r4300.cached_interp.invalid_code[block]);
u_int first,last;
first=last=page;
struct ll_entry *head;
head=jump_dirty[vpage];
//DebugMessage(M64MSG_VERBOSE, "page=%d vpage=%d",page,vpage);
while(head!=NULL) {
u_int start,end;
if(vpage>2047||(head->vaddr>>12)==block) { // Ignore vaddr hash collision
get_bounds((int)head->addr,&start,&end);
//DebugMessage(M64MSG_VERBOSE, "start: %x end: %x",start,end);
if((start!=0)&&(page<2048)&&((start-(u_int)g_dev.ri.rdram.dram)>=0)&&((end-(u_int)g_dev.ri.rdram.dram)<0x800000)) {
if(((start-(u_int)g_dev.ri.rdram.dram)>>12)<=page&&((end-1-(u_int)g_dev.ri.rdram.dram)>>12)>=page) {
if((((start-(u_int)g_dev.ri.rdram.dram)>>12)&2047)<first) first=((start-(u_int)g_dev.ri.rdram.dram)>>12)&2047;
if((((end-1-(u_int)g_dev.ri.rdram.dram)>>12)&2047)>last) last=((end-1-(u_int)g_dev.ri.rdram.dram)>>12)&2047;
}
}
}
head=head->next;
}
//DebugMessage(M64MSG_VERBOSE, "first=%d last=%d",first,last);
invalidate_page(page);
assert(first+5>page); // NB: this assumes MAXBLOCK<=4096 (4 pages)
assert(last<page+5);
// Invalidate the adjacent pages if a block crosses a 4K boundary
while(first<page) {
invalidate_page(first);
first++;
}
for(first=page+1;first<last;first++) {
invalidate_page(first);
}
#if NEW_DYNAREC == NEW_DYNAREC_ARM
do_clear_cache();
#endif
// Don't trap writes
g_dev.r4300.cached_interp.invalid_code[block]=1;
// If there is a valid TLB entry for this page, remove write protect
if(g_dev.r4300.cp0.tlb.LUT_w[block]) {
assert(g_dev.r4300.cp0.tlb.LUT_r[block]==g_dev.r4300.cp0.tlb.LUT_w[block]);
// CHECK: Is this right?
memory_map[block]=((g_dev.r4300.cp0.tlb.LUT_w[block]&0xFFFFF000)-(block<<12)+(unsigned int)g_dev.ri.rdram.dram-0x80000000)>>2;
u_int real_block=g_dev.r4300.cp0.tlb.LUT_w[block]>>12;
g_dev.r4300.cached_interp.invalid_code[real_block]=1;
if(real_block>=0x80000&&real_block<0x80800) memory_map[real_block]=((u_int)g_dev.ri.rdram.dram-0x80000000)>>2;
}
else if(block>=0x80000&&block<0x80800) memory_map[block]=((u_int)g_dev.ri.rdram.dram-0x80000000)>>2;
#ifdef USE_MINI_HT
memset(mini_ht,-1,sizeof(mini_ht));
#endif
}
void invalidate_cached_code_new_dynarec(struct r4300_core* r4300, uint32_t address, size_t size)
{
size_t i;
size_t begin;
size_t end;
if (size == 0)
{
begin = 0;
end = 0xfffff;
}
else
{
begin = address >> 12;
end = (address+size-1) >> 12;
}
for(i = begin; i <= end; ++i)
invalidate_block(i);
}
// This is called when loading a save state.
// Anything could have changed, so invalidate everything.
void invalidate_all_pages(void)
{
u_int page;
for(page=0;page<4096;page++)
invalidate_page(page);
for(page=0;page<1048576;page++)
{
if(!g_dev.r4300.cached_interp.invalid_code[page]) {
restore_candidate[(page&2047)>>3]|=1<<(page&7);
restore_candidate[((page&2047)>>3)+256]|=1<<(page&7);
}
}
#if NEW_DYNAREC == NEW_DYNAREC_ARM
__clear_cache((void *)base_addr,(void *)base_addr+(1<<TARGET_SIZE_2));
//cacheflush((void *)base_addr,(void *)base_addr+(1<<TARGET_SIZE_2),0);
#endif
#ifdef USE_MINI_HT
memset(mini_ht,-1,sizeof(mini_ht));
#endif
// TLB
for(page=0;page<0x100000;page++) {
if(g_dev.r4300.cp0.tlb.LUT_r[page]) {
memory_map[page]=((g_dev.r4300.cp0.tlb.LUT_r[page]&0xFFFFF000)-(page<<12)+(unsigned int)g_dev.ri.rdram.dram-0x80000000)>>2;
if(!g_dev.r4300.cp0.tlb.LUT_w[page]||!g_dev.r4300.cached_interp.invalid_code[page])
memory_map[page]|=0x40000000; // Write protect
}
else memory_map[page]=-1;
if(page==0x80000) page=0xC0000;
}
tlb_hacks();
}
// If a code block was found to be unmodified (bit was set in
// restore_candidate) and it remains unmodified (bit is clear
// in invalid_code) then move the entries for that 4K page from
// the dirty list to the clean list.
void clean_blocks(u_int page)
{
struct ll_entry *head;
inv_debug("INV: clean_blocks page=%d\n",page);
head=jump_dirty[page];
while(head!=NULL) {
if(!g_dev.r4300.cached_interp.invalid_code[head->vaddr>>12]) {
// Don't restore blocks which are about to expire from the cache
if((((u_int)head->addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
u_int start,end;
if(verify_dirty(head->addr)) {
//DebugMessage(M64MSG_VERBOSE, "Possibly Restore %x (%x)",head->vaddr, (int)head->addr);
u_int i;
u_int inv=0;
get_bounds((int)head->addr,&start,&end);
if(start-(u_int)g_dev.ri.rdram.dram<0x800000) {
for(i=(start-(u_int)g_dev.ri.rdram.dram+0x80000000)>>12;i<=(end-1-(u_int)g_dev.ri.rdram.dram+0x80000000)>>12;i++) {
inv|=g_dev.r4300.cached_interp.invalid_code[i];
}
}
if((signed int)head->vaddr>=(signed int)0xC0000000) {
u_int addr = (head->vaddr+(memory_map[head->vaddr>>12]<<2));
//DebugMessage(M64MSG_VERBOSE, "addr=%x start=%x end=%x",addr,start,end);
if(addr<start||addr>=end) inv=1;
}
else if((signed int)head->vaddr>=(signed int)0x80800000) {
inv=1;
}
if(!inv) {
void * clean_addr=(void *)get_clean_addr((int)head->addr);
if((((u_int)clean_addr-(u_int)out)<<(32-TARGET_SIZE_2))>0x60000000+(MAX_OUTPUT_BLOCK_SIZE<<(32-TARGET_SIZE_2))) {
u_int ppage=page;
if(page<2048&&g_dev.r4300.cp0.tlb.LUT_r[head->vaddr>>12]) ppage=(g_dev.r4300.cp0.tlb.LUT_r[head->vaddr>>12]^0x80000000)>>12;
inv_debug("INV: Restored %x (%x/%x)\n",head->vaddr, (int)head->addr, (int)clean_addr);
//DebugMessage(M64MSG_VERBOSE, "page=%x, addr=%x",page,head->vaddr);
//assert(head->vaddr>>12==(page|0x80000));
ll_add_32(jump_in+ppage,head->vaddr,head->reg32,clean_addr);
u_int *ht_bin=hash_table[((head->vaddr>>16)^head->vaddr)&0xFFFF];
if(!head->reg32) {
if(ht_bin[0]==head->vaddr) {
ht_bin[1]=(int)clean_addr; // Replace existing entry
}
if(ht_bin[2]==head->vaddr) {
ht_bin[3]=(int)clean_addr; // Replace existing entry
}
}
}
}
}
}
}
head=head->next;
}
}
static void emit_extjump(int addr, int target)
{
emit_extjump2(addr, target, (int)dyna_linker);
}
static void emit_extjump_ds(int addr, int target)
{
emit_extjump2(addr, target, (int)dyna_linker_ds);
}
static void mov_alloc(struct regstat *current,int i)
{
// Note: Don't need to actually alloc the source registers
if((~current->is32>>rs1[i])&1) {
//alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
} else {
//alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rt1[i]);
current->is32|=(1LL<<rt1[i]);
}
clear_const(current,rs1[i]);
clear_const(current,rt1[i]);
dirty_reg(current,rt1[i]);
}
static void shiftimm_alloc(struct regstat *current,int i)
{
clear_const(current,rs1[i]);
clear_const(current,rt1[i]);
if(opcode2[i]<=0x3) // SLL/SRL/SRA
{
if(rt1[i]) {
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
else lt1[i]=rs1[i];
alloc_reg(current,i,rt1[i]);
current->is32|=1LL<<rt1[i];
dirty_reg(current,rt1[i]);
}
}
if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
{
if(rt1[i]) {
if(rs1[i]) alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
dirty_reg(current,rt1[i]);
}
}
if(opcode2[i]==0x3c) // DSLL32
{
if(rt1[i]) {
if(rs1[i]) alloc_reg(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
dirty_reg(current,rt1[i]);
}
}
if(opcode2[i]==0x3e) // DSRL32
{
if(rt1[i]) {
alloc_reg64(current,i,rs1[i]);
if(imm[i]==32) {
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
} else {
alloc_reg(current,i,rt1[i]);
current->is32|=1LL<<rt1[i];
}
dirty_reg(current,rt1[i]);
}
}
if(opcode2[i]==0x3f) // DSRA32
{
if(rt1[i]) {
alloc_reg64(current,i,rs1[i]);
alloc_reg(current,i,rt1[i]);
current->is32|=1LL<<rt1[i];
dirty_reg(current,rt1[i]);
}
}
}
static void shift_alloc(struct regstat *current,int i)
{
if(rt1[i]) {
if(opcode2[i]<=0x07) // SLLV/SRLV/SRAV
{
if(rs1[i]) alloc_reg(current,i,rs1[i]);
if(rs2[i]) alloc_reg(current,i,rs2[i]);
alloc_reg(current,i,rt1[i]);
if(rt1[i]==rs2[i]) {
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
current->is32|=1LL<<rt1[i];
} else { // DSLLV/DSRLV/DSRAV
if(rs1[i]) alloc_reg64(current,i,rs1[i]);
if(rs2[i]) alloc_reg(current,i,rs2[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
if(opcode2[i]==0x16||opcode2[i]==0x17) // DSRLV and DSRAV need a temporary register
{
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
}
clear_const(current,rs1[i]);
clear_const(current,rs2[i]);
clear_const(current,rt1[i]);
dirty_reg(current,rt1[i]);
}
}
static void alu_alloc(struct regstat *current,int i)
{
if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
if(rt1[i]) {
if(rs1[i]&&rs2[i]) {
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
}
else {
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
}
alloc_reg(current,i,rt1[i]);
}
current->is32|=1LL<<rt1[i];
}
if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
if(rt1[i]) {
if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
{
alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rs2[i]);
alloc_reg(current,i,rt1[i]);
} else {
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
alloc_reg(current,i,rt1[i]);
}
}
current->is32|=1LL<<rt1[i];
}
if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
if(rt1[i]) {
if(rs1[i]&&rs2[i]) {
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
}
else
{
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg(current,i,rs2[i]);
}
alloc_reg(current,i,rt1[i]);
if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
{
if(!((current->uu>>rt1[i])&1)) {
alloc_reg64(current,i,rt1[i]);
}
if(get_reg(current->regmap,rt1[i]|64)>=0) {
if(rs1[i]&&rs2[i]) {
alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rs2[i]);
}
else
{
// Is is really worth it to keep 64-bit values in registers?
#ifdef NATIVE_64BIT
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
if(rs2[i]&&needed_again(rs2[i],i)) alloc_reg64(current,i,rs2[i]);
#endif
}
}
current->is32&=~(1LL<<rt1[i]);
} else {
current->is32|=1LL<<rt1[i];
}
}
}
if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
if(rt1[i]) {
if(rs1[i]&&rs2[i]) {
if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rs2[i]);
alloc_reg64(current,i,rt1[i]);
} else {
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
alloc_reg(current,i,rt1[i]);
}
}
else {
alloc_reg(current,i,rt1[i]);
if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
// DADD used as move, or zeroing
// If we have a 64-bit source, then make the target 64 bits too
if(rs1[i]&&!((current->is32>>rs1[i])&1)) {
if(get_reg(current->regmap,rs1[i])>=0) alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
} else if(rs2[i]&&!((current->is32>>rs2[i])&1)) {
if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
alloc_reg64(current,i,rt1[i]);
}
if(opcode2[i]>=0x2e&&rs2[i]) {
// DSUB used as negation - 64-bit result
// If we have a 32-bit register, extend it to 64 bits
if(get_reg(current->regmap,rs2[i])>=0) alloc_reg64(current,i,rs2[i]);
alloc_reg64(current,i,rt1[i]);
}
}
}
if(rs1[i]&&rs2[i]) {
current->is32&=~(1LL<<rt1[i]);
} else if(rs1[i]) {
current->is32&=~(1LL<<rt1[i]);
if((current->is32>>rs1[i])&1)
current->is32|=1LL<<rt1[i];
} else if(rs2[i]) {
current->is32&=~(1LL<<rt1[i]);
if((current->is32>>rs2[i])&1)
current->is32|=1LL<<rt1[i];
} else {
current->is32|=1LL<<rt1[i];
}
}
}
clear_const(current,rs1[i]);
clear_const(current,rs2[i]);
clear_const(current,rt1[i]);
dirty_reg(current,rt1[i]);
}
static void imm16_alloc(struct regstat *current,int i)
{
if(rs1[i]&&needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
else lt1[i]=rs1[i];
if(rt1[i]) alloc_reg(current,i,rt1[i]);
if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
current->is32&=~(1LL<<rt1[i]);
if(!((current->uu>>rt1[i])&1)||get_reg(current->regmap,rt1[i]|64)>=0) {
// TODO: Could preserve the 32-bit flag if the immediate is zero
alloc_reg64(current,i,rt1[i]);
alloc_reg64(current,i,rs1[i]);
}
clear_const(current,rs1[i]);
clear_const(current,rt1[i]);
}
else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
if((~current->is32>>rs1[i])&1) alloc_reg64(current,i,rs1[i]);
current->is32|=1LL<<rt1[i];
clear_const(current,rs1[i]);
clear_const(current,rt1[i]);
}
else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
if(((~current->is32>>rs1[i])&1)&&opcode[i]>0x0c) {
if(rs1[i]!=rt1[i]) {
if(needed_again(rs1[i],i)) alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rt1[i]);
current->is32&=~(1LL<<rt1[i]);
}
}
else current->is32|=1LL<<rt1[i]; // ANDI clears upper bits
if(is_const(current,rs1[i])) {
int v=get_const(current,rs1[i]);
if(opcode[i]==0x0c) set_const(current,rt1[i],v&imm[i]);
if(opcode[i]==0x0d) set_const(current,rt1[i],v|imm[i]);
if(opcode[i]==0x0e) set_const(current,rt1[i],v^imm[i]);
}
else clear_const(current,rt1[i]);
}
else if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
if(is_const(current,rs1[i])) {
int v=get_const(current,rs1[i]);
set_const(current,rt1[i],v+imm[i]);
}
else clear_const(current,rt1[i]);
current->is32|=1LL<<rt1[i];
}
else {
set_const(current,rt1[i],((long long)((short)imm[i]))<<16); // LUI
current->is32|=1LL<<rt1[i];
}
dirty_reg(current,rt1[i]);
}
static void load_alloc(struct regstat *current,int i)
{
clear_const(current,rt1[i]);
//if(rs1[i]!=rt1[i]&&needed_again(rs1[i],i)) clear_const(current,rs1[i]); // Does this help or hurt?
if(!rs1[i]) current->u&=~1LL; // Allow allocating r0 if it's the source register
if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
if(rt1[i]&&!((current->u>>rt1[i])&1)) {
alloc_reg(current,i,rt1[i]);
assert(get_reg(current->regmap,rt1[i])>=0);
if(opcode[i]==0x27||opcode[i]==0x37) // LWU/LD
{
current->is32&=~(1LL<<rt1[i]);
alloc_reg64(current,i,rt1[i]);
}
else if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
{
current->is32&=~(1LL<<rt1[i]);
alloc_reg64(current,i,rt1[i]);
alloc_all(current,i);
alloc_reg64(current,i,FTEMP);
minimum_free_regs[i]=HOST_REGS;
}
else current->is32|=1LL<<rt1[i];
dirty_reg(current,rt1[i]);
// If using TLB, need a register for pointer to the mapping table
if(using_tlb) alloc_reg(current,i,TLREG);
// LWL/LWR need a temporary register for the old value
if(opcode[i]==0x22||opcode[i]==0x26)
{
alloc_reg(current,i,FTEMP);
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
}
else
{
// Load to r0 or unneeded register (dummy load)
// but we still need a register to calculate the address
if(opcode[i]==0x22||opcode[i]==0x26)
{
alloc_reg(current,i,FTEMP); // LWL/LWR need another temporary
}
// If using TLB, need a register for pointer to the mapping table
if(using_tlb) alloc_reg(current,i,TLREG);
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
if(opcode[i]==0x1A||opcode[i]==0x1B) // LDL/LDR
{
alloc_all(current,i);
alloc_reg64(current,i,FTEMP);
minimum_free_regs[i]=HOST_REGS;
}
}
}
static void store_alloc(struct regstat *current,int i)
{
clear_const(current,rs2[i]);
if(!(rs2[i])) current->u&=~1LL; // Allow allocating r0 if necessary
if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
if(opcode[i]==0x2c||opcode[i]==0x2d||opcode[i]==0x3f) { // 64-bit SDL/SDR/SD
alloc_reg64(current,i,rs2[i]);
if(rs2[i]) alloc_reg(current,i,FTEMP);
}
// If using TLB, need a register for pointer to the mapping table
if(using_tlb) alloc_reg(current,i,TLREG);
#if defined(HOST_IMM8)
// On CPUs without 32-bit immediates we need a pointer to invalid_code
else alloc_reg(current,i,INVCP);
#endif
if(opcode[i]==0x2c||opcode[i]==0x2d) { // 64-bit SDL/SDR
alloc_reg(current,i,FTEMP);
}
// We need a temporary register for address generation
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
static void c1ls_alloc(struct regstat *current,int i)
{
//clear_const(current,rs1[i]); // FIXME
clear_const(current,rt1[i]);
if(needed_again(rs1[i],i)) alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,CSREG); // Status
alloc_reg(current,i,FTEMP);
if(opcode[i]==0x35||opcode[i]==0x3d) { // 64-bit LDC1/SDC1
alloc_reg64(current,i,FTEMP);
}
// If using TLB, need a register for pointer to the mapping table
if(using_tlb) alloc_reg(current,i,TLREG);
#if defined(HOST_IMM8)
// On CPUs without 32-bit immediates we need a pointer to invalid_code
else if((opcode[i]&0x3b)==0x39) // SWC1/SDC1
alloc_reg(current,i,INVCP);
#endif
// We need a temporary register for address generation
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
#ifndef multdiv_alloc
void multdiv_alloc(struct regstat *current,int i)
{
// case 0x18: MULT
// case 0x19: MULTU
// case 0x1A: DIV
// case 0x1B: DIVU
// case 0x1C: DMULT
// case 0x1D: DMULTU
// case 0x1E: DDIV
// case 0x1F: DDIVU
clear_const(current,rs1[i]);
clear_const(current,rs2[i]);
if(rs1[i]&&rs2[i])
{
if((opcode2[i]&4)==0) // 32-bit
{
current->u&=~(1LL<<HIREG);
current->u&=~(1LL<<LOREG);
alloc_reg(current,i,HIREG);
alloc_reg(current,i,LOREG);
alloc_reg(current,i,rs1[i]);
alloc_reg(current,i,rs2[i]);
current->is32|=1LL<<HIREG;
current->is32|=1LL<<LOREG;
dirty_reg(current,HIREG);
dirty_reg(current,LOREG);
}
else // 64-bit
{
current->u&=~(1LL<<HIREG);
current->u&=~(1LL<<LOREG);
current->uu&=~(1LL<<HIREG);
current->uu&=~(1LL<<LOREG);
alloc_reg64(current,i,HIREG);
//if(HOST_REGS>10) alloc_reg64(current,i,LOREG);
alloc_reg64(current,i,rs1[i]);
alloc_reg64(current,i,rs2[i]);
alloc_all(current,i);
current->is32&=~(1LL<<HIREG);
current->is32&=~(1LL<<LOREG);
dirty_reg(current,HIREG);
dirty_reg(current,LOREG);
minimum_free_regs[i]=HOST_REGS;
}
}
else
{
// Multiply by zero is zero.
// MIPS does not have a divide by zero exception.
// The result is undefined, we return zero.
alloc_reg(current,i,HIREG);
alloc_reg(current,i,LOREG);
current->is32|=1LL<<HIREG;
current->is32|=1LL<<LOREG;
dirty_reg(current,HIREG);
dirty_reg(current,LOREG);
}
}
#endif
static void cop0_alloc(struct regstat *current,int i)
{
if(opcode2[i]==0) // MFC0
{
if(rt1[i]) {
clear_const(current,rt1[i]);
alloc_all(current,i);
alloc_reg(current,i,rt1[i]);
current->is32|=1LL<<rt1[i];
dirty_reg(current,rt1[i]);
}
}
else if(opcode2[i]==4) // MTC0
{
if(rs1[i]){
clear_const(current,rs1[i]);
alloc_reg(current,i,rs1[i]);
alloc_all(current,i);
}
else {
alloc_all(current,i); // FIXME: Keep r0
current->u&=~1LL;
alloc_reg(current,i,0);
}
}
else
{
// TLBR/TLBWI/TLBWR/TLBP/ERET
assert(opcode2[i]==0x10);
alloc_all(current,i);
}
minimum_free_regs[i]=HOST_REGS;
}
static void cop1_alloc(struct regstat *current,int i)
{
alloc_reg(current,i,CSREG); // Load status
if(opcode2[i]<3) // MFC1/DMFC1/CFC1
{
assert(rt1[i]);
clear_const(current,rt1[i]);
if(opcode2[i]==1) {
alloc_reg64(current,i,rt1[i]); // DMFC1
current->is32&=~(1LL<<rt1[i]);
}else{
alloc_reg(current,i,rt1[i]); // MFC1/CFC1
current->is32|=1LL<<rt1[i];
}
dirty_reg(current,rt1[i]);
alloc_reg_temp(current,i,-1);
}
else if(opcode2[i]>3) // MTC1/DMTC1/CTC1
{
if(rs1[i]){
clear_const(current,rs1[i]);
if(opcode2[i]==5)
alloc_reg64(current,i,rs1[i]); // DMTC1
else
alloc_reg(current,i,rs1[i]); // MTC1/CTC1
alloc_reg_temp(current,i,-1);
}
else {
current->u&=~1LL;
alloc_reg(current,i,0);
alloc_reg_temp(current,i,-1);
}
}
minimum_free_regs[i]=1;
}
static void fconv_alloc(struct regstat *current,int i)
{
alloc_reg(current,i,CSREG); // Load status
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
static void float_alloc(struct regstat *current,int i)
{
alloc_reg(current,i,CSREG); // Load status
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
static void fcomp_alloc(struct regstat *current,int i)
{
alloc_reg(current,i,CSREG); // Load status
alloc_reg(current,i,FSREG); // Load flags
dirty_reg(current,FSREG); // Flag will be modified
alloc_reg_temp(current,i,-1);
minimum_free_regs[i]=1;
}
static void syscall_alloc(struct regstat *current,int i)
{
alloc_cc(current,i);
dirty_reg(current,CCREG);
alloc_all(current,i);
minimum_free_regs[i]=HOST_REGS;
current->isconst=0;
}
static void delayslot_alloc(struct regstat *current,int i)
{
switch(itype[i]) {
case UJUMP:
case CJUMP:
case SJUMP:
case RJUMP:
case FJUMP:
case SYSCALL:
case SPAN:
assem_debug("jump in the delay slot. this shouldn't happen.");//exit(1);
DebugMessage(M64MSG_VERBOSE, "Disabled speculative precompilation");
stop_after_jal=1;
break;
case IMM16:
imm16_alloc(current,i);
break;
case LOAD:
case LOADLR:
load_alloc(current,i);
break;
case STORE:
case STORELR:
store_alloc(current,i);
break;
case ALU:
alu_alloc(current,i);
break;
case SHIFT:
shift_alloc(current,i);
break;
case MULTDIV:
multdiv_alloc(current,i);
break;
case SHIFTIMM:
shiftimm_alloc(current,i);
break;
case MOV:
mov_alloc(current,i);
break;
case COP0:
cop0_alloc(current,i);
break;
case COP1:
cop1_alloc(current,i);
break;
case C1LS:
c1ls_alloc(current,i);
break;
case FCONV:
fconv_alloc(current,i);
break;
case FLOAT:
float_alloc(current,i);
break;
case FCOMP:
fcomp_alloc(current,i);
break;
}
}
// Special case where a branch and delay slot span two pages in virtual memory
static void pagespan_alloc(struct regstat *current,int i)
{
current->isconst=0;
current->wasconst=0;
regs[i].wasconst=0;
minimum_free_regs[i]=HOST_REGS;
alloc_all(current,i);
alloc_cc(current,i);
dirty_reg(current,CCREG);
if(opcode[i]==3) // JAL
{
alloc_reg(current,i,31);
dirty_reg(current,31);
}
if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
{
alloc_reg(current,i,rs1[i]);
if (rt1[i]!=0) {
alloc_reg(current,i,rt1[i]);
dirty_reg(current,rt1[i]);
}
}
if((opcode[i]&0x2E)==4) // BEQ/BNE/BEQL/BNEL
{
if(rs1[i]) alloc_reg(current,i,rs1[i]);
if(rs2[i]) alloc_reg(current,i,rs2[i]);
if(!((current->is32>>rs1[i])&(current->is32>>rs2[i])&1))
{
if(rs1[i]) alloc_reg64(current,i,rs1[i]);
if(rs2[i]) alloc_reg64(current,i,rs2[i]);
}
}
else
if((opcode[i]&0x2E)==6) // BLEZ/BGTZ/BLEZL/BGTZL
{
if(rs1[i]) alloc_reg(current,i,rs1[i]);
if(!((current->is32>>rs1[i])&1))
{
if(rs1[i]) alloc_reg64(current,i,rs1[i]);
}
}
else
if(opcode[i]==0x11) // BC1
{
alloc_reg(current,i,FSREG);
alloc_reg(current,i,CSREG);
}
//else ...
}
// Write out a single register
static void wb_register(signed char r,signed char regmap[],uint64_t dirty,uint64_t is32)
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if((regmap[hr]&63)==r) {
if((dirty>>hr)&1) {
if(regmap[hr]<64) {
emit_storereg(r,hr);
if((is32>>regmap[hr])&1) {
emit_sarimm(hr,31,hr);
emit_storereg(r|64,hr);
}
}else{
emit_storereg(r|64,hr);
}
}
}
}
}
}
#if 0
static int mchecksum(void)
{
int i;
int sum=0;
for(i=0;i<2097152;i++) {
unsigned int temp=sum;
sum<<=1;
sum|=(~temp)>>31;
sum^=((u_int *)g_dev.ri.rdram.dram)[i];
}
return sum;
}
static int rchecksum(void)
{
int i;
int sum=0;
for(i=0;i<64;i++)
sum^=((u_int *)reg)[i];
return sum;
}
static void rlist(void)
{
int i;
DebugMessage(M64MSG_VERBOSE, "TRACE: ");
for(i=0;i<32;i++)
DebugMessage(M64MSG_VERBOSE, "r%d:%8x%8x ",i,((int *)(reg+i))[1],((int *)(reg+i))[0]);
DebugMessage(M64MSG_VERBOSE, "TRACE: ");
for(i=0;i<32;i++)
DebugMessage(M64MSG_VERBOSE, "f%d:%8x%8x ",i,((int*)g_dev.r4300.cp1.regs_simple[i])[1],*((int*)g_dev.r4300.cp1.regs_simple[i]));
}
static void memdebug(int i)
{
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) lo=%8x%8x",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,mchecksum(),(int)(reg[LOREG]>>32),(int)reg[LOREG]);
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (rchecksum %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,rchecksum());
//rlist();
if((signed int)r4300_cp0_regs()[CP0_COUNT_REG]>=-2084597794&&(signed int)r4300_cp0_regs()[CP0_COUNT_REG]<0) {
DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x)",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,mchecksum());
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) Status=%x",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,mchecksum(),r4300_cp0_regs()[CP0_STATUS_REG]);
//DebugMessage(M64MSG_VERBOSE, "TRACE: count=%d next=%d (checksum %x) hi=%8x%8x",r4300_cp0_regs()[CP0_COUNT_REG],g_dev.r4300.cp0.next_interrupt,mchecksum(),(int)(reg[HIREG]>>32),(int)reg[HIREG]);
rlist();
#if NEW_DYNAREC == NEW_DYNAREC_X86
DebugMessage(M64MSG_VERBOSE, "TRACE: %x",(&i)[-1]);
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
int j;
DebugMessage(M64MSG_VERBOSE, "TRACE: %x ",(&j)[10]);
DebugMessage(M64MSG_VERBOSE, "TRACE: %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x",(&j)[1],(&j)[2],(&j)[3],(&j)[4],(&j)[5],(&j)[6],(&j)[7],(&j)[8],(&j)[9],(&j)[10],(&j)[11],(&j)[12],(&j)[13],(&j)[14],(&j)[15],(&j)[16],(&j)[17],(&j)[18],(&j)[19],(&j)[20]);
#endif
//fflush(stdout);
}
//DebugMessage(M64MSG_VERBOSE, "TRACE: %x",(&i)[-1]);
}
#endif
/* Debug:
static void tlb_debug(u_int cause, u_int addr, u_int iaddr)
{
DebugMessage(M64MSG_VERBOSE, "TLB Exception: instruction=%x addr=%x cause=%x",iaddr, addr, cause);
}
end debug */
static void alu_assemble(int i,struct regstat *i_regs)
{
if(opcode2[i]>=0x20&&opcode2[i]<=0x23) { // ADD/ADDU/SUB/SUBU
if(rt1[i]) {
signed char s1,s2,t;
t=get_reg(i_regs->regmap,rt1[i]);
if(t>=0) {
s1=get_reg(i_regs->regmap,rs1[i]);
s2=get_reg(i_regs->regmap,rs2[i]);
if(rs1[i]&&rs2[i]) {
assert(s1>=0);
assert(s2>=0);
if(opcode2[i]&2) emit_sub(s1,s2,t);
else emit_add(s1,s2,t);
}
else if(rs1[i]) {
if(s1>=0) emit_mov(s1,t);
else emit_loadreg(rs1[i],t);
}
else if(rs2[i]) {
if(s2>=0) {
if(opcode2[i]&2) emit_neg(s2,t);
else emit_mov(s2,t);
}
else {
emit_loadreg(rs2[i],t);
if(opcode2[i]&2) emit_neg(t,t);
}
}
else emit_zeroreg(t);
}
}
}
if(opcode2[i]>=0x2c&&opcode2[i]<=0x2f) { // DADD/DADDU/DSUB/DSUBU
if(rt1[i]) {
signed char s1l,s2l,s1h,s2h,tl,th;
tl=get_reg(i_regs->regmap,rt1[i]);
th=get_reg(i_regs->regmap,rt1[i]|64);
if(tl>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s2l=get_reg(i_regs->regmap,rs2[i]);
s1h=get_reg(i_regs->regmap,rs1[i]|64);
s2h=get_reg(i_regs->regmap,rs2[i]|64);
if(rs1[i]&&rs2[i]) {
assert(s1l>=0);
assert(s2l>=0);
if(th>=0) {
#ifdef INVERTED_CARRY
if(opcode2[i]&2) emit_sub64_32(s1l,s1h,s2l,s2h,tl,th);
#else
if(opcode2[i]&2) {
emit_subs(s1l,s2l,tl);
emit_sbc(s1h,s2h,th);
}
#endif
else {
emit_adds(s1l,s2l,tl);
emit_adc(s1h,s2h,th);
}
}
else {
if(opcode2[i]&2) emit_subs(s1l,s2l,tl);
else emit_adds(s1l,s2l,tl);
}
}
else if(rs1[i]) {
if(s1l>=0) emit_mov(s1l,tl);
else emit_loadreg(rs1[i],tl);
if(th>=0) {
if(s1h>=0) emit_mov(s1h,th);
else emit_loadreg(rs1[i]|64,th);
}
}
else if(rs2[i]) {
if(s2l>=0) {
if(opcode2[i]&2) emit_negs(s2l,tl);
else emit_mov(s2l,tl);
}
else {
emit_loadreg(rs2[i],tl);
if(opcode2[i]&2) emit_negs(tl,tl);
}
if(th>=0) {
#ifdef INVERTED_CARRY
if(s2h>=0) emit_mov(s2h,th);
else emit_loadreg(rs2[i]|64,th);
if(opcode2[i]&2) {
emit_adcimm(-1,th); // x86 has inverted carry flag
emit_not(th,th);
}
#else
if(opcode2[i]&2) {
if(s2h>=0) emit_rscimm(s2h,0,th);
else {
emit_loadreg(rs2[i]|64,th);
emit_rscimm(th,0,th);
}
}else{
if(s2h>=0) emit_mov(s2h,th);
else emit_loadreg(rs2[i]|64,th);
}
#endif
}
}
else {
emit_zeroreg(tl);
if(th>=0) emit_zeroreg(th);
}
}
}
}
if(opcode2[i]==0x2a||opcode2[i]==0x2b) { // SLT/SLTU
if(rt1[i]) {
signed char s1l,s1h,s2l,s2h,t;
if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1))
{
t=get_reg(i_regs->regmap,rt1[i]);
//assert(t>=0);
if(t>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s1h=get_reg(i_regs->regmap,rs1[i]|64);
s2l=get_reg(i_regs->regmap,rs2[i]);
s2h=get_reg(i_regs->regmap,rs2[i]|64);
if(rs2[i]==0) // rx<r0
{
assert(s1h>=0);
if(opcode2[i]==0x2a) // SLT
emit_shrimm(s1h,31,t);
else // SLTU (unsigned can not be less than zero)
emit_zeroreg(t);
}
else if(rs1[i]==0) // r0<rx
{
assert(s2h>=0);
if(opcode2[i]==0x2a) // SLT
emit_set_gz64_32(s2h,s2l,t);
else // SLTU (set if not zero)
emit_set_nz64_32(s2h,s2l,t);
}
else {
assert(s1l>=0);assert(s1h>=0);
assert(s2l>=0);assert(s2h>=0);
if(opcode2[i]==0x2a) // SLT
emit_set_if_less64_32(s1h,s1l,s2h,s2l,t);
else // SLTU
emit_set_if_carry64_32(s1h,s1l,s2h,s2l,t);
}
}
} else {
t=get_reg(i_regs->regmap,rt1[i]);
//assert(t>=0);
if(t>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s2l=get_reg(i_regs->regmap,rs2[i]);
if(rs2[i]==0) // rx<r0
{
assert(s1l>=0);
if(opcode2[i]==0x2a) // SLT
emit_shrimm(s1l,31,t);
else // SLTU (unsigned can not be less than zero)
emit_zeroreg(t);
}
else if(rs1[i]==0) // r0<rx
{
assert(s2l>=0);
if(opcode2[i]==0x2a) // SLT
emit_set_gz32(s2l,t);
else // SLTU (set if not zero)
emit_set_nz32(s2l,t);
}
else{
assert(s1l>=0);assert(s2l>=0);
if(opcode2[i]==0x2a) // SLT
emit_set_if_less32(s1l,s2l,t);
else // SLTU
emit_set_if_carry32(s1l,s2l,t);
}
}
}
}
}
if(opcode2[i]>=0x24&&opcode2[i]<=0x27) { // AND/OR/XOR/NOR
if(rt1[i]) {
signed char s1l,s1h,s2l,s2h,th,tl;
tl=get_reg(i_regs->regmap,rt1[i]);
th=get_reg(i_regs->regmap,rt1[i]|64);
if(!((i_regs->was32>>rs1[i])&(i_regs->was32>>rs2[i])&1)&&th>=0)
{
assert(tl>=0);
if(tl>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s1h=get_reg(i_regs->regmap,rs1[i]|64);
s2l=get_reg(i_regs->regmap,rs2[i]);
s2h=get_reg(i_regs->regmap,rs2[i]|64);
if(rs1[i]&&rs2[i]) {
assert(s1l>=0);assert(s1h>=0);
assert(s2l>=0);assert(s2h>=0);
if(opcode2[i]==0x24) { // AND
emit_and(s1l,s2l,tl);
emit_and(s1h,s2h,th);
} else
if(opcode2[i]==0x25) { // OR
emit_or(s1l,s2l,tl);
emit_or(s1h,s2h,th);
} else
if(opcode2[i]==0x26) { // XOR
emit_xor(s1l,s2l,tl);
emit_xor(s1h,s2h,th);
} else
if(opcode2[i]==0x27) { // NOR
emit_or(s1l,s2l,tl);
emit_or(s1h,s2h,th);
emit_not(tl,tl);
emit_not(th,th);
}
}
else
{
if(opcode2[i]==0x24) { // AND
emit_zeroreg(tl);
emit_zeroreg(th);
} else
if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
if(rs1[i]){
if(s1l>=0) emit_mov(s1l,tl);
else emit_loadreg(rs1[i],tl);
if(s1h>=0) emit_mov(s1h,th);
else emit_loadreg(rs1[i]|64,th);
}
else
if(rs2[i]){
if(s2l>=0) emit_mov(s2l,tl);
else emit_loadreg(rs2[i],tl);
if(s2h>=0) emit_mov(s2h,th);
else emit_loadreg(rs2[i]|64,th);
}
else{
emit_zeroreg(tl);
emit_zeroreg(th);
}
} else
if(opcode2[i]==0x27) { // NOR
if(rs1[i]){
if(s1l>=0) emit_not(s1l,tl);
else{
emit_loadreg(rs1[i],tl);
emit_not(tl,tl);
}
if(s1h>=0) emit_not(s1h,th);
else{
emit_loadreg(rs1[i]|64,th);
emit_not(th,th);
}
}
else
if(rs2[i]){
if(s2l>=0) emit_not(s2l,tl);
else{
emit_loadreg(rs2[i],tl);
emit_not(tl,tl);
}
if(s2h>=0) emit_not(s2h,th);
else{
emit_loadreg(rs2[i]|64,th);
emit_not(th,th);
}
}
else {
emit_movimm(-1,tl);
emit_movimm(-1,th);
}
}
}
}
}
else
{
// 32 bit
if(tl>=0) {
s1l=get_reg(i_regs->regmap,rs1[i]);
s2l=get_reg(i_regs->regmap,rs2[i]);
if(rs1[i]&&rs2[i]) {
assert(s1l>=0);
assert(s2l>=0);
if(opcode2[i]==0x24) { // AND
emit_and(s1l,s2l,tl);
} else
if(opcode2[i]==0x25) { // OR
emit_or(s1l,s2l,tl);
} else
if(opcode2[i]==0x26) { // XOR
emit_xor(s1l,s2l,tl);
} else
if(opcode2[i]==0x27) { // NOR
emit_or(s1l,s2l,tl);
emit_not(tl,tl);
}
}
else
{
if(opcode2[i]==0x24) { // AND
emit_zeroreg(tl);
} else
if(opcode2[i]==0x25||opcode2[i]==0x26) { // OR/XOR
if(rs1[i]){
if(s1l>=0) emit_mov(s1l,tl);
else emit_loadreg(rs1[i],tl); // CHECK: regmap_entry?
}
else
if(rs2[i]){
if(s2l>=0) emit_mov(s2l,tl);
else emit_loadreg(rs2[i],tl); // CHECK: regmap_entry?
}
else emit_zeroreg(tl);
} else
if(opcode2[i]==0x27) { // NOR
if(rs1[i]){
if(s1l>=0) emit_not(s1l,tl);
else {
emit_loadreg(rs1[i],tl);
emit_not(tl,tl);
}
}
else
if(rs2[i]){
if(s2l>=0) emit_not(s2l,tl);
else {
emit_loadreg(rs2[i],tl);
emit_not(tl,tl);
}
}
else emit_movimm(-1,tl);
}
}
}
}
}
}
}
static void imm16_assemble(int i,struct regstat *i_regs)
{
if (opcode[i]==0x0f) { // LUI
if(rt1[i]) {
signed char t;
t=get_reg(i_regs->regmap,rt1[i]);
//assert(t>=0);
if(t>=0) {
if(!((i_regs->isconst>>t)&1))
emit_movimm(imm[i]<<16,t);
}
}
}
if(opcode[i]==0x08||opcode[i]==0x09) { // ADDI/ADDIU
if(rt1[i]) {
signed char s,t;
t=get_reg(i_regs->regmap,rt1[i]);
s=get_reg(i_regs->regmap,rs1[i]);
if(rs1[i]) {
//assert(t>=0);
//assert(s>=0);
if(t>=0) {
if(!((i_regs->isconst>>t)&1)) {
if(s<0) {
if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
emit_addimm(t,imm[i],t);
}else{
if(!((i_regs->wasconst>>s)&1))
emit_addimm(s,imm[i],t);
else
emit_movimm(constmap[i][s]+imm[i],t);
}
}
}
} else {
if(t>=0) {
if(!((i_regs->isconst>>t)&1))
emit_movimm(imm[i],t);
}
}
}
}
if(opcode[i]==0x18||opcode[i]==0x19) { // DADDI/DADDIU
if(rt1[i]) {
signed char sh,sl,th,tl;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(tl>=0) {
if(rs1[i]) {
assert(sh>=0);
assert(sl>=0);
if(th>=0) {
emit_addimm64_32(sh,sl,imm[i],th,tl);
}
else {
emit_addimm(sl,imm[i],tl);
}
} else {
emit_movimm(imm[i],tl);
if(th>=0) emit_movimm(((signed int)imm[i])>>31,th);
}
}
}
}
else if(opcode[i]==0x0a||opcode[i]==0x0b) { // SLTI/SLTIU
if(rt1[i]) {
//assert(rs1[i]!=0); // r0 might be valid, but it's probably a bug
signed char sh,sl,t;
t=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
//assert(t>=0);
if(t>=0) {
if(rs1[i]>0) {
if(sh<0) assert((i_regs->was32>>rs1[i])&1);
if(sh<0||((i_regs->was32>>rs1[i])&1)) {
if(opcode[i]==0x0a) { // SLTI
if(sl<0) {
if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
emit_slti32(t,imm[i],t);
}else{
emit_slti32(sl,imm[i],t);
}
}
else { // SLTIU
if(sl<0) {
if(i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
emit_sltiu32(t,imm[i],t);
}else{
emit_sltiu32(sl,imm[i],t);
}
}
}else{ // 64-bit
assert(sl>=0);
if(opcode[i]==0x0a) // SLTI
emit_slti64_32(sh,sl,imm[i],t);
else // SLTIU
emit_sltiu64_32(sh,sl,imm[i],t);
}
}else{
// SLTI(U) with r0 is just stupid,
// nonetheless examples can be found
if(opcode[i]==0x0a) // SLTI
if(0<imm[i]) emit_movimm(1,t);
else emit_zeroreg(t);
else // SLTIU
{
if(imm[i]) emit_movimm(1,t);
else emit_zeroreg(t);
}
}
}
}
}
else if(opcode[i]>=0x0c&&opcode[i]<=0x0e) { // ANDI/ORI/XORI
if(rt1[i]) {
signed char sh,sl,th,tl;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(tl>=0 && !((i_regs->isconst>>tl)&1)) {
if(opcode[i]==0x0c) //ANDI
{
if(rs1[i]) {
if(sl<0) {
if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
emit_andimm(tl,imm[i],tl);
}else{
if(!((i_regs->wasconst>>sl)&1))
emit_andimm(sl,imm[i],tl);
else
emit_movimm(constmap[i][sl]&imm[i],tl);
}
}
else
emit_zeroreg(tl);
if(th>=0) emit_zeroreg(th);
}
else
{
if(rs1[i]) {
if(sl<0) {
if(i_regs->regmap_entry[tl]!=rs1[i]) emit_loadreg(rs1[i],tl);
}
if(th>=0) {
if(sh<0) {
emit_loadreg(rs1[i]|64,th);
}else{
emit_mov(sh,th);
}
}
if(opcode[i]==0x0d) { //ORI
if(sl<0) {
emit_orimm(tl,imm[i],tl);
}else{
if(!((i_regs->wasconst>>sl)&1))
emit_orimm(sl,imm[i],tl);
else
emit_movimm((int)(constmap[i][sl]|imm[i]),tl);
}
}
if(opcode[i]==0x0e) { //XORI
if(sl<0) {
emit_xorimm(tl,imm[i],tl);
}else{
if(!((i_regs->wasconst>>sl)&1))
emit_xorimm(sl,imm[i],tl);
else
emit_movimm((int)(constmap[i][sl]^imm[i]),tl);
}
}
}
else {
emit_movimm(imm[i],tl);
if(th>=0) emit_zeroreg(th);
}
}
}
}
}
}
static void shiftimm_assemble(int i,struct regstat *i_regs)
{
if(opcode2[i]<=0x3) // SLL/SRL/SRA
{
if(rt1[i]) {
signed char s,t;
t=get_reg(i_regs->regmap,rt1[i]);
s=get_reg(i_regs->regmap,rs1[i]);
//assert(t>=0);
if(t>=0){
if(rs1[i]==0)
{
emit_zeroreg(t);
}
else
{
if(s<0&&i_regs->regmap_entry[t]!=rs1[i]) emit_loadreg(rs1[i],t);
if(imm[i]) {
if(opcode2[i]==0) // SLL
{
emit_shlimm(s<0?t:s,imm[i],t);
}
if(opcode2[i]==2) // SRL
{
emit_shrimm(s<0?t:s,imm[i],t);
}
if(opcode2[i]==3) // SRA
{
emit_sarimm(s<0?t:s,imm[i],t);
}
}else{
// Shift by zero
if(s>=0 && s!=t) emit_mov(s,t);
}
}
}
//emit_storereg(rt1[i],t); //DEBUG
}
}
if(opcode2[i]>=0x38&&opcode2[i]<=0x3b) // DSLL/DSRL/DSRA
{
if(rt1[i]) {
signed char sh,sl,th,tl;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(tl>=0) {
if(rs1[i]==0)
{
emit_zeroreg(tl);
if(th>=0) emit_zeroreg(th);
}
else
{
assert(sl>=0);
assert(sh>=0);
if(imm[i]) {
if(opcode2[i]==0x38) // DSLL
{
if(th>=0) emit_shldimm(sh,sl,imm[i],th);
emit_shlimm(sl,imm[i],tl);
}
if(opcode2[i]==0x3a) // DSRL
{
emit_shrdimm(sl,sh,imm[i],tl);
if(th>=0) emit_shrimm(sh,imm[i],th);
}
if(opcode2[i]==0x3b) // DSRA
{
emit_shrdimm(sl,sh,imm[i],tl);
if(th>=0) emit_sarimm(sh,imm[i],th);
}
}else{
// Shift by zero
if(sl!=tl) emit_mov(sl,tl);
if(th>=0&&sh!=th) emit_mov(sh,th);
}
}
}
}
}
if(opcode2[i]==0x3c) // DSLL32
{
if(rt1[i]) {
signed char sl,tl,th;
tl=get_reg(i_regs->regmap,rt1[i]);
th=get_reg(i_regs->regmap,rt1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(th>=0||tl>=0){
assert(tl>=0);
assert(th>=0);
assert(sl>=0);
emit_mov(sl,th);
emit_zeroreg(tl);
if(imm[i]>32)
{
emit_shlimm(th,imm[i]&31,th);
}
}
}
}
if(opcode2[i]==0x3e) // DSRL32
{
if(rt1[i]) {
signed char sh,tl,th;
tl=get_reg(i_regs->regmap,rt1[i]);
th=get_reg(i_regs->regmap,rt1[i]|64);
sh=get_reg(i_regs->regmap,rs1[i]|64);
if(tl>=0){
assert(sh>=0);
emit_mov(sh,tl);
if(th>=0) emit_zeroreg(th);
if(imm[i]>32)
{
emit_shrimm(tl,imm[i]&31,tl);
}
}
}
}
if(opcode2[i]==0x3f) // DSRA32
{
if(rt1[i]) {
signed char sh,tl;
tl=get_reg(i_regs->regmap,rt1[i]);
sh=get_reg(i_regs->regmap,rs1[i]|64);
if(tl>=0){
assert(sh>=0);
emit_mov(sh,tl);
if(imm[i]>32)
{
emit_sarimm(tl,imm[i]&31,tl);
}
}
}
}
}
#ifndef shift_assemble
void shift_assemble(int i,struct regstat *i_regs)
{
DebugMessage(M64MSG_ERROR, "Need shift_assemble for this architecture.");
exit(1);
}
#endif
static void load_assemble(int i,struct regstat *i_regs)
{
int s,th,tl,addr,map=-1,cache=-1;
int offset;
int jaddr=0;
int memtarget,c=0;
u_int hr,reglist=0;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
s=get_reg(i_regs->regmap,rs1[i]);
offset=imm[i];
for(hr=0;hr<HOST_REGS;hr++) {
if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
}
if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
if(s>=0) {
c=(i_regs->wasconst>>s)&1;
memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
}
if(tl<0) tl=get_reg(i_regs->regmap,-1);
if(offset||s<0||c) addr=tl;
else addr=s;
//DebugMessage(M64MSG_VERBOSE, "load_assemble: c=%d",c);
//if(c) DebugMessage(M64MSG_VERBOSE, "load_assemble: const=%x",(int)constmap[i][s]+offset);
assert(tl>=0); // Even if the load is a NOP, we must check for pagefaults and I/O
reglist&=~(1<<tl);
if(th>=0) reglist&=~(1<<th);
if(!using_tlb) {
if(!c) {
#ifdef RAM_OFFSET
map=get_reg(i_regs->regmap,ROREG);
if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
#endif
//#define R29_HACK 1
#ifdef R29_HACK
// Strmnnrmn's speed hack
if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
#endif
{
emit_cmpimm(addr,0x800000);
jaddr=(int)out;
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
// Hint to branch predictor that the branch is unlikely to be taken
if(rs1[i]>=28)
emit_jno_unlikely(0);
else
#endif
emit_jno(0);
}
}
}else{ // using tlb
int x=0;
if (opcode[i]==0x20||opcode[i]==0x24) x=3; // LB/LBU
if (opcode[i]==0x21||opcode[i]==0x25) x=2; // LH/LHU
map=get_reg(i_regs->regmap,TLREG);
cache=get_reg(i_regs->regmap,MMREG);
assert(map>=0);
reglist&=~(1<<map);
map=do_tlb_r(addr,tl,map,cache,x,-1,-1,c,constmap[i][s]+offset);
do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr);
}
int dummy=(rt1[i]==0)||(tl!=get_reg(i_regs->regmap,rt1[i])); // ignore loads to r0 and unneeded reg
if (opcode[i]==0x20) { // LB
if(!c||memtarget) {
if(!dummy) {
#ifdef HOST_IMM_ADDR32
if(c)
emit_movsbl_tlb((constmap[i][s]+offset)^3,map,tl);
else
#endif
{
//emit_xorimm(addr,3,tl);
//gen_tlb_addr_r(tl,map);
//emit_movsbl_indexed((int)g_dev.ri.rdram.dram-0x80000000,tl,tl);
int x=0;
if(!c) emit_xorimm(addr,3,tl);
else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
emit_movsbl_indexed_tlb(x,tl,map,tl);
}
}
if(jaddr)
add_stub(LOADB_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADB_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x21) { // LH
if(!c||memtarget) {
if(!dummy) {
#ifdef HOST_IMM_ADDR32
if(c)
emit_movswl_tlb((constmap[i][s]+offset)^2,map,tl);
else
#endif
{
int x=0;
if(!c) emit_xorimm(addr,2,tl);
else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
//#ifdef
//emit_movswl_indexed_tlb(x,tl,map,tl);
//else
if(map>=0) {
gen_tlb_addr_r(tl,map);
emit_movswl_indexed(x,tl,tl);
}else{
#ifdef RAM_OFFSET
emit_movswl_indexed(x,tl,tl);
#else
emit_movswl_indexed((int)g_dev.ri.rdram.dram-0x80000000+x,tl,tl);
#endif
}
}
}
if(jaddr)
add_stub(LOADH_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADH_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x23) { // LW
if(!c||memtarget) {
if(!dummy) {
//emit_readword_indexed((int)g_dev.ri.rdram.dram-0x80000000,addr,tl);
#ifdef HOST_IMM_ADDR32
if(c)
emit_readword_tlb(constmap[i][s]+offset,map,tl);
else
#endif
emit_readword_indexed_tlb(0,addr,map,tl);
}
if(jaddr)
add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x24) { // LBU
if(!c||memtarget) {
if(!dummy) {
#ifdef HOST_IMM_ADDR32
if(c)
emit_movzbl_tlb((constmap[i][s]+offset)^3,map,tl);
else
#endif
{
//emit_xorimm(addr,3,tl);
//gen_tlb_addr_r(tl,map);
//emit_movzbl_indexed((int)g_dev.ri.rdram.dram-0x80000000,tl,tl);
int x=0;
if(!c) emit_xorimm(addr,3,tl);
else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
emit_movzbl_indexed_tlb(x,tl,map,tl);
}
}
if(jaddr)
add_stub(LOADBU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADBU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x25) { // LHU
if(!c||memtarget) {
if(!dummy) {
#ifdef HOST_IMM_ADDR32
if(c)
emit_movzwl_tlb((constmap[i][s]+offset)^2,map,tl);
else
#endif
{
int x=0;
if(!c) emit_xorimm(addr,2,tl);
else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
//#ifdef
//emit_movzwl_indexed_tlb(x,tl,map,tl);
//#else
if(map>=0) {
gen_tlb_addr_r(tl,map);
emit_movzwl_indexed(x,tl,tl);
}else{
#ifdef RAM_OFFSET
emit_movzwl_indexed(x,tl,tl);
#else
emit_movzwl_indexed((int)g_dev.ri.rdram.dram-0x80000000+x,tl,tl);
#endif
}
}
}
if(jaddr)
add_stub(LOADHU_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADHU_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
if (opcode[i]==0x27) { // LWU
assert(th>=0);
if(!c||memtarget) {
if(!dummy) {
//emit_readword_indexed((int)g_dev.ri.rdram.dram-0x80000000,addr,tl);
#ifdef HOST_IMM_ADDR32
if(c)
emit_readword_tlb(constmap[i][s]+offset,map,tl);
else
#endif
emit_readword_indexed_tlb(0,addr,map,tl);
}
if(jaddr)
add_stub(LOADW_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else {
inline_readstub(LOADW_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
emit_zeroreg(th);
}
if (opcode[i]==0x37) { // LD
if(!c||memtarget) {
if(!dummy) {
//gen_tlb_addr_r(tl,map);
//if(th>=0) emit_readword_indexed((int)g_dev.ri.rdram.dram-0x80000000,addr,th);
//emit_readword_indexed((int)g_dev.ri.rdram.dram-0x7FFFFFFC,addr,tl);
#ifdef HOST_IMM_ADDR32
if(c)
emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
else
#endif
emit_readdword_indexed_tlb(0,addr,map,th,tl);
}
if(jaddr)
add_stub(LOADD_STUB,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
}
else
inline_readstub(LOADD_STUB,i,constmap[i][s]+offset,i_regs->regmap,rt1[i],ccadj[i],reglist);
}
//emit_storereg(rt1[i],tl); // DEBUG
//if(opcode[i]==0x23)
//if(opcode[i]==0x24)
//if(opcode[i]==0x23||opcode[i]==0x24)
/*if(opcode[i]==0x21||opcode[i]==0x23||opcode[i]==0x24)
{
//emit_pusha();
save_regs(0x100f);
emit_readword((int)&last_count,ECX);
#if NEW_DYNAREC == NEW_DYNAREC_X86
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,HOST_CCREG);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
emit_writeword(HOST_CCREG,(int)&r4300_cp0_regs()[CP0_COUNT_REG]);
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,0);
else
emit_mov(HOST_CCREG,0);
emit_add(0,ECX,0);
emit_addimm(0,2*ccadj[i],0);
emit_writeword(0,(int)&r4300_cp0_regs()[CP0_COUNT_REG]);
#endif
emit_call((int)memdebug);
//emit_popa();
restore_regs(0x100f);
}*/
}
#ifndef loadlr_assemble
static void loadlr_assemble(int i,struct regstat *i_regs)
{
DebugMessage(M64MSG_ERROR, "Need loadlr_assemble for this architecture.");
exit(1);
}
#endif
static void store_assemble(int i,struct regstat *i_regs)
{
int s,th,tl,map=-1,cache=-1;
int addr,temp;
int offset;
int jaddr=0,jaddr2,type;
int memtarget,c=0;
int agr=AGEN1+(i&1);
u_int hr,reglist=0;
th=get_reg(i_regs->regmap,rs2[i]|64);
tl=get_reg(i_regs->regmap,rs2[i]);
s=get_reg(i_regs->regmap,rs1[i]);
temp=get_reg(i_regs->regmap,agr);
if(temp<0) temp=get_reg(i_regs->regmap,-1);
offset=imm[i];
if(s>=0) {
c=(i_regs->wasconst>>s)&1;
memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
}
assert(tl>=0);
assert(temp>=0);
for(hr=0;hr<HOST_REGS;hr++) {
if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
}
if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
if(offset||s<0||c) addr=temp;
else addr=s;
if(!using_tlb) {
#ifdef RAM_OFFSET
map=get_reg(i_regs->regmap,ROREG);
if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
#endif
if(!c) {
#ifdef R29_HACK
// Strmnnrmn's speed hack
memtarget=1;
if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
#endif
emit_cmpimm(addr,0x800000);
#ifdef DESTRUCTIVE_SHIFT
if(s==addr) emit_mov(s,temp);
#endif
#ifdef R29_HACK
if(rs1[i]!=29||start<0x80001000||start>=0x80800000)
#endif
{
jaddr=(int)out;
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
// Hint to branch predictor that the branch is unlikely to be taken
if(rs1[i]>=28)
emit_jno_unlikely(0);
else
#endif
emit_jno(0);
}
}
}else{ // using tlb
int x=0;
if (opcode[i]==0x28) x=3; // SB
if (opcode[i]==0x29) x=2; // SH
map=get_reg(i_regs->regmap,TLREG);
cache=get_reg(i_regs->regmap,MMREG);
assert(map>=0);
reglist&=~(1<<map);
map=do_tlb_w(addr,temp,map,cache,x,c,constmap[i][s]+offset);
do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
}
if (opcode[i]==0x28) { // SB
if(!c||memtarget) {
int x=0;
if(!c) emit_xorimm(addr,3,temp);
else x=((constmap[i][s]+offset)^3)-(constmap[i][s]+offset);
//gen_tlb_addr_w(temp,map);
//emit_writebyte_indexed(tl,(int)g_dev.ri.rdram.dram-0x80000000,temp);
emit_writebyte_indexed_tlb(tl,x,temp,map,temp);
}
type=STOREB_STUB;
}
if (opcode[i]==0x29) { // SH
if(!c||memtarget) {
int x=0;
if(!c) emit_xorimm(addr,2,temp);
else x=((constmap[i][s]+offset)^2)-(constmap[i][s]+offset);
//#ifdef
//emit_writehword_indexed_tlb(tl,x,temp,map,temp);
//#else
if(map>=0) {
gen_tlb_addr_w(temp,map);
emit_writehword_indexed(tl,x,temp);
}else
emit_writehword_indexed(tl,(int)g_dev.ri.rdram.dram-0x80000000+x,temp);
}
type=STOREH_STUB;
}
if (opcode[i]==0x2B) { // SW
if(!c||memtarget)
//emit_writeword_indexed(tl,(int)g_dev.ri.rdram.dram-0x80000000,addr);
emit_writeword_indexed_tlb(tl,0,addr,map,temp);
type=STOREW_STUB;
}
if (opcode[i]==0x3F) { // SD
if(!c||memtarget) {
if(rs2[i]) {
assert(th>=0);
//emit_writeword_indexed(th,(int)g_dev.ri.rdram.dram-0x80000000,addr);
//emit_writeword_indexed(tl,(int)g_dev.ri.rdram.dram-0x7FFFFFFC,addr);
emit_writedword_indexed_tlb(th,tl,0,addr,map,temp);
}else{
// Store zero
//emit_writeword_indexed(tl,(int)g_dev.ri.rdram.dram-0x80000000,temp);
//emit_writeword_indexed(tl,(int)g_dev.ri.rdram.dram-0x7FFFFFFC,temp);
emit_writedword_indexed_tlb(tl,tl,0,addr,map,temp);
}
}
type=STORED_STUB;
}
if(!using_tlb) {
if(!c||memtarget) {
#ifdef DESTRUCTIVE_SHIFT
// The x86 shift operation is 'destructive'; it overwrites the
// source register, so we need to make a copy first and use that.
addr=temp;
#endif
#if defined(HOST_IMM8)
int ir=get_reg(i_regs->regmap,INVCP);
assert(ir>=0);
emit_cmpmem_indexedsr12_reg(ir,addr,1);
#else
emit_cmpmem_indexedsr12_imm((int)g_dev.r4300.cached_interp.invalid_code,addr,1);
#endif
#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
emit_callne(invalidate_addr_reg[addr]);
#else
jaddr2=(int)out;
emit_jne(0);
add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),addr,0,0,0);
#endif
}
}
if(jaddr) {
add_stub(type,jaddr,(int)out,i,addr,(int)i_regs,ccadj[i],reglist);
} else if(c&&!memtarget) {
inline_writestub(type,i,constmap[i][s]+offset,i_regs->regmap,rs2[i],ccadj[i],reglist);
}
//if(opcode[i]==0x2B || opcode[i]==0x3F)
//if(opcode[i]==0x2B || opcode[i]==0x28)
//if(opcode[i]==0x2B || opcode[i]==0x29)
//if(opcode[i]==0x2B)
// Uncomment for extra debug output:
/*
if(opcode[i]==0x2B || opcode[i]==0x28 || opcode[i]==0x29 || opcode[i]==0x3F)
{
#if NEW_DYNAREC == NEW_DYNAREC_X86
emit_pusha();
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
save_regs(0x100f);
#endif
emit_readword((int)&last_count,ECX);
#if NEW_DYNAREC == NEW_DYNAREC_X86
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,HOST_CCREG);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
emit_writeword(HOST_CCREG,(int)&r4300_cp0_regs()[CP0_COUNT_REG]);
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,0);
else
emit_mov(HOST_CCREG,0);
emit_add(0,ECX,0);
emit_addimm(0,2*ccadj[i],0);
emit_writeword(0,(int)&r4300_cp0_regs()[CP0_COUNT_REG]);
#endif
emit_call((int)memdebug);
#if NEW_DYNAREC == NEW_DYNAREC_X86
emit_popa();
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
restore_regs(0x100f);
#endif
}
*/
}
static void storelr_assemble(int i,struct regstat *i_regs)
{
int s,th,tl;
int temp;
int temp2;
int offset;
int jaddr=0,jaddr2;
int case1,case2,case3;
int done0,done1,done2;
int memtarget,c=0;
int agr=AGEN1+(i&1);
u_int hr,reglist=0;
th=get_reg(i_regs->regmap,rs2[i]|64);
tl=get_reg(i_regs->regmap,rs2[i]);
s=get_reg(i_regs->regmap,rs1[i]);
temp=get_reg(i_regs->regmap,agr);
if(temp<0) temp=get_reg(i_regs->regmap,-1);
offset=imm[i];
if(s>=0) {
c=(i_regs->isconst>>s)&1;
memtarget=((signed int)(constmap[i][s]+offset))<(signed int)0x80800000;
if(using_tlb&&((signed int)(constmap[i][s]+offset))>=(signed int)0xC0000000) memtarget=1;
}
assert(tl>=0);
for(hr=0;hr<HOST_REGS;hr++) {
if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
}
assert(temp>=0);
if(!using_tlb) {
if(!c) {
emit_cmpimm(s<0||offset?temp:s,0x800000);
if(!offset&&s!=temp) emit_mov(s,temp);
jaddr=(int)out;
emit_jno(0);
}
else
{
if(!memtarget||!rs1[i]) {
jaddr=(int)out;
emit_jmp(0);
}
}
#ifdef RAM_OFFSET
int map=get_reg(i_regs->regmap,ROREG);
if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
gen_tlb_addr_w(temp,map);
#else
if((u_int)g_dev.ri.rdram.dram!=0x80000000)
emit_addimm_no_flags((u_int)g_dev.ri.rdram.dram-(u_int)0x80000000,temp);
#endif
}else{ // using tlb
int map=get_reg(i_regs->regmap,TLREG);
int cache=get_reg(i_regs->regmap,MMREG);
assert(map>=0);
reglist&=~(1<<map);
map=do_tlb_w(c||s<0||offset?temp:s,temp,map,cache,0,c,constmap[i][s]+offset);
if(!c&&!offset&&s>=0) emit_mov(s,temp);
do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr);
if(!jaddr&&!memtarget) {
jaddr=(int)out;
emit_jmp(0);
}
gen_tlb_addr_w(temp,map);
}
if (opcode[i]==0x2C||opcode[i]==0x2D) { // SDL/SDR
temp2=get_reg(i_regs->regmap,FTEMP);
if(!rs2[i]) temp2=th=tl;
}
emit_testimm(temp,2);
case2=(int)out;
emit_jne(0);
emit_testimm(temp,1);
case1=(int)out;
emit_jne(0);
// 0
if (opcode[i]==0x2A) { // SWL
emit_writeword_indexed(tl,0,temp);
}
if (opcode[i]==0x2E) { // SWR
emit_writebyte_indexed(tl,3,temp);
}
if (opcode[i]==0x2C) { // SDL
emit_writeword_indexed(th,0,temp);
if(rs2[i]) emit_mov(tl,temp2);
}
if (opcode[i]==0x2D) { // SDR
emit_writebyte_indexed(tl,3,temp);
if(rs2[i]) emit_shldimm(th,tl,24,temp2);
}
done0=(int)out;
emit_jmp(0);
// 1
set_jump_target(case1,(int)out);
if (opcode[i]==0x2A) { // SWL
// Write 3 msb into three least significant bytes
if(rs2[i]) emit_rorimm(tl,8,tl);
emit_writehword_indexed(tl,-1,temp);
if(rs2[i]) emit_rorimm(tl,16,tl);
emit_writebyte_indexed(tl,1,temp);
if(rs2[i]) emit_rorimm(tl,8,tl);
}
if (opcode[i]==0x2E) { // SWR
// Write two lsb into two most significant bytes
emit_writehword_indexed(tl,1,temp);
}
if (opcode[i]==0x2C) { // SDL
if(rs2[i]) emit_shrdimm(tl,th,8,temp2);
// Write 3 msb into three least significant bytes
if(rs2[i]) emit_rorimm(th,8,th);
emit_writehword_indexed(th,-1,temp);
if(rs2[i]) emit_rorimm(th,16,th);
emit_writebyte_indexed(th,1,temp);
if(rs2[i]) emit_rorimm(th,8,th);
}
if (opcode[i]==0x2D) { // SDR
if(rs2[i]) emit_shldimm(th,tl,16,temp2);
// Write two lsb into two most significant bytes
emit_writehword_indexed(tl,1,temp);
}
done1=(int)out;
emit_jmp(0);
// 2
set_jump_target(case2,(int)out);
emit_testimm(temp,1);
case3=(int)out;
emit_jne(0);
if (opcode[i]==0x2A) { // SWL
// Write two msb into two least significant bytes
if(rs2[i]) emit_rorimm(tl,16,tl);
emit_writehword_indexed(tl,-2,temp);
if(rs2[i]) emit_rorimm(tl,16,tl);
}
if (opcode[i]==0x2E) { // SWR
// Write 3 lsb into three most significant bytes
emit_writebyte_indexed(tl,-1,temp);
if(rs2[i]) emit_rorimm(tl,8,tl);
emit_writehword_indexed(tl,0,temp);
if(rs2[i]) emit_rorimm(tl,24,tl);
}
if (opcode[i]==0x2C) { // SDL
if(rs2[i]) emit_shrdimm(tl,th,16,temp2);
// Write two msb into two least significant bytes
if(rs2[i]) emit_rorimm(th,16,th);
emit_writehword_indexed(th,-2,temp);
if(rs2[i]) emit_rorimm(th,16,th);
}
if (opcode[i]==0x2D) { // SDR
if(rs2[i]) emit_shldimm(th,tl,8,temp2);
// Write 3 lsb into three most significant bytes
emit_writebyte_indexed(tl,-1,temp);
if(rs2[i]) emit_rorimm(tl,8,tl);
emit_writehword_indexed(tl,0,temp);
if(rs2[i]) emit_rorimm(tl,24,tl);
}
done2=(int)out;
emit_jmp(0);
// 3
set_jump_target(case3,(int)out);
if (opcode[i]==0x2A) { // SWL
// Write msb into least significant byte
if(rs2[i]) emit_rorimm(tl,24,tl);
emit_writebyte_indexed(tl,-3,temp);
if(rs2[i]) emit_rorimm(tl,8,tl);
}
if (opcode[i]==0x2E) { // SWR
// Write entire word
emit_writeword_indexed(tl,-3,temp);
}
if (opcode[i]==0x2C) { // SDL
if(rs2[i]) emit_shrdimm(tl,th,24,temp2);
// Write msb into least significant byte
if(rs2[i]) emit_rorimm(th,24,th);
emit_writebyte_indexed(th,-3,temp);
if(rs2[i]) emit_rorimm(th,8,th);
}
if (opcode[i]==0x2D) { // SDR
if(rs2[i]) emit_mov(th,temp2);
// Write entire word
emit_writeword_indexed(tl,-3,temp);
}
set_jump_target(done0,(int)out);
set_jump_target(done1,(int)out);
set_jump_target(done2,(int)out);
if (opcode[i]==0x2C) { // SDL
emit_testimm(temp,4);
done0=(int)out;
emit_jne(0);
emit_andimm(temp,~3,temp);
emit_writeword_indexed(temp2,4,temp);
set_jump_target(done0,(int)out);
}
if (opcode[i]==0x2D) { // SDR
emit_testimm(temp,4);
done0=(int)out;
emit_jeq(0);
emit_andimm(temp,~3,temp);
emit_writeword_indexed(temp2,-4,temp);
set_jump_target(done0,(int)out);
}
if(!c||!memtarget)
add_stub(STORELR_STUB,jaddr,(int)out,0,(int)i_regs,rs2[i],ccadj[i],reglist);
if(!using_tlb) {
#ifdef RAM_OFFSET
int map=get_reg(i_regs->regmap,ROREG);
if(map<0) map=HOST_TEMPREG;
gen_orig_addr_w(temp,map);
#else
emit_addimm_no_flags((u_int)0x80000000-(u_int)g_dev.ri.rdram.dram,temp);
#endif
#if defined(HOST_IMM8)
int ir=get_reg(i_regs->regmap,INVCP);
assert(ir>=0);
emit_cmpmem_indexedsr12_reg(ir,temp,1);
#else
emit_cmpmem_indexedsr12_imm((int)g_dev.r4300.cached_interp.invalid_code,temp,1);
#endif
#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
emit_callne(invalidate_addr_reg[temp]);
#else
jaddr2=(int)out;
emit_jne(0);
add_stub(INVCODE_STUB,jaddr2,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
#endif
}
/*
emit_pusha();
//save_regs(0x100f);
emit_readword((int)&last_count,ECX);
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,HOST_CCREG);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
emit_writeword(HOST_CCREG,(int)&r4300_cp0_regs()[CP0_COUNT_REG]);
emit_call((int)memdebug);
emit_popa();
//restore_regs(0x100f);
*/
}
static void c1ls_assemble(int i,struct regstat *i_regs)
{
int s,th,tl;
int temp,ar;
int map=-1;
int offset;
int c=0;
int jaddr,jaddr2=0,jaddr3,type;
int agr=AGEN1+(i&1);
u_int hr,reglist=0;
th=get_reg(i_regs->regmap,FTEMP|64);
tl=get_reg(i_regs->regmap,FTEMP);
s=get_reg(i_regs->regmap,rs1[i]);
temp=get_reg(i_regs->regmap,agr);
if(temp<0) temp=get_reg(i_regs->regmap,-1);
offset=imm[i];
assert(tl>=0);
assert(rs1[i]>0);
assert(temp>=0);
for(hr=0;hr<HOST_REGS;hr++) {
if(i_regs->regmap[hr]>=0) reglist|=1<<hr;
}
if(i_regs->regmap[HOST_CCREG]==CCREG) reglist&=~(1<<HOST_CCREG);
if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
{
// Loads use a temporary register which we need to save
reglist|=1<<temp;
}
if (opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
ar=temp;
else // LWC1/LDC1
ar=tl;
//if(s<0) emit_loadreg(rs1[i],ar); //address_generation does this now
//else c=(i_regs->wasconst>>s)&1;
if(s>=0) c=(i_regs->wasconst>>s)&1;
// Check cop1 unusable
if(!cop1_usable) {
signed char rs=get_reg(i_regs->regmap,CSREG);
assert(rs>=0);
emit_testimm(rs,0x20000000);
jaddr=(int)out;
emit_jeq(0);
add_stub(FP_STUB,jaddr,(int)out,i,rs,(int)i_regs,is_delayslot,0);
cop1_usable=1;
}
if (opcode[i]==0x39) { // SWC1 (get float address)
emit_readword((int)&r4300_cp1_regs_simple()[(source[i]>>16)&0x1f],tl);
}
if (opcode[i]==0x3D) { // SDC1 (get double address)
emit_readword((int)&r4300_cp1_regs_double()[(source[i]>>16)&0x1f],tl);
}
// Generate address + offset
if(!using_tlb) {
#ifdef RAM_OFFSET
if (!c||opcode[i]==0x39||opcode[i]==0x3D) // SWC1/SDC1
{
map=get_reg(i_regs->regmap,ROREG);
if(map<0) emit_loadreg(ROREG,map=HOST_TEMPREG);
}
#endif
if(!c)
emit_cmpimm(offset||c||s<0?ar:s,0x800000);
}
else
{
map=get_reg(i_regs->regmap,TLREG);
int cache=get_reg(i_regs->regmap,MMREG);
assert(map>=0);
reglist&=~(1<<map);
if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
map=do_tlb_r(offset||c||s<0?ar:s,ar,map,cache,0,-1,-1,c,constmap[i][s]+offset);
}
if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
map=do_tlb_w(offset||c||s<0?ar:s,ar,map,cache,0,c,constmap[i][s]+offset);
}
}
if (opcode[i]==0x39) { // SWC1 (read float)
emit_readword_indexed(0,tl,tl);
}
if (opcode[i]==0x3D) { // SDC1 (read double)
emit_readword_indexed(4,tl,th);
emit_readword_indexed(0,tl,tl);
}
if (opcode[i]==0x31) { // LWC1 (get target address)
emit_readword((int)&r4300_cp1_regs_simple()[(source[i]>>16)&0x1f],temp);
}
if (opcode[i]==0x35) { // LDC1 (get target address)
emit_readword((int)&r4300_cp1_regs_double()[(source[i]>>16)&0x1f],temp);
}
if(!using_tlb) {
if(!c) {
jaddr2=(int)out;
emit_jno(0);
}
else if(((signed int)(constmap[i][s]+offset))>=(signed int)0x80800000) {
jaddr2=(int)out;
emit_jmp(0); // inline_readstub/inline_writestub? Very rare case
}
#ifdef DESTRUCTIVE_SHIFT
if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
if(!offset&&!c&&s>=0) emit_mov(s,ar);
}
#endif
}else{
if (opcode[i]==0x31||opcode[i]==0x35) { // LWC1/LDC1
do_tlb_r_branch(map,c,constmap[i][s]+offset,&jaddr2);
}
if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
do_tlb_w_branch(map,c,constmap[i][s]+offset,&jaddr2);
}
}
if (opcode[i]==0x31) { // LWC1
//if(s>=0&&!c&&!offset) emit_mov(s,tl);
//gen_tlb_addr_r(ar,map);
//emit_readword_indexed((int)g_dev.ri.rdram.dram-0x80000000,tl,tl);
#ifdef HOST_IMM_ADDR32
if(c) emit_readword_tlb(constmap[i][s]+offset,map,tl);
else
#endif
emit_readword_indexed_tlb(0,offset||c||s<0?tl:s,map,tl);
type=LOADW_STUB;
}
if (opcode[i]==0x35) { // LDC1
assert(th>=0);
//if(s>=0&&!c&&!offset) emit_mov(s,tl);
//gen_tlb_addr_r(ar,map);
//emit_readword_indexed((int)g_dev.ri.rdram.dram-0x80000000,tl,th);
//emit_readword_indexed((int)g_dev.ri.rdram.dram-0x7FFFFFFC,tl,tl);
#ifdef HOST_IMM_ADDR32
if(c) emit_readdword_tlb(constmap[i][s]+offset,map,th,tl);
else
#endif
emit_readdword_indexed_tlb(0,offset||c||s<0?tl:s,map,th,tl);
type=LOADD_STUB;
}
if (opcode[i]==0x39) { // SWC1
//emit_writeword_indexed(tl,(int)g_dev.ri.rdram.dram-0x80000000,temp);
emit_writeword_indexed_tlb(tl,0,offset||c||s<0?temp:s,map,temp);
type=STOREW_STUB;
}
if (opcode[i]==0x3D) { // SDC1
assert(th>=0);
//emit_writeword_indexed(th,(int)g_dev.ri.rdram.dram-0x80000000,temp);
//emit_writeword_indexed(tl,(int)g_dev.ri.rdram.dram-0x7FFFFFFC,temp);
emit_writedword_indexed_tlb(th,tl,0,offset||c||s<0?temp:s,map,temp);
type=STORED_STUB;
}
if(!using_tlb) {
if (opcode[i]==0x39||opcode[i]==0x3D) { // SWC1/SDC1
#ifndef DESTRUCTIVE_SHIFT
temp=offset||c||s<0?ar:s;
#endif
#if defined(HOST_IMM8)
int ir=get_reg(i_regs->regmap,INVCP);
assert(ir>=0);
emit_cmpmem_indexedsr12_reg(ir,temp,1);
#else
emit_cmpmem_indexedsr12_imm((int)g_dev.r4300.cached_interp.invalid_code,temp,1);
#endif
#if defined(HAVE_CONDITIONAL_CALL) && !defined(DESTRUCTIVE_SHIFT)
emit_callne(invalidate_addr_reg[temp]);
#else
jaddr3=(int)out;
emit_jne(0);
add_stub(INVCODE_STUB,jaddr3,(int)out,reglist|(1<<HOST_CCREG),temp,0,0,0);
#endif
}
}
if(jaddr2) add_stub(type,jaddr2,(int)out,i,offset||c||s<0?ar:s,(int)i_regs,ccadj[i],reglist);
if (opcode[i]==0x31) { // LWC1 (write float)
emit_writeword_indexed(tl,0,temp);
}
if (opcode[i]==0x35) { // LDC1 (write double)
emit_writeword_indexed(th,4,temp);
emit_writeword_indexed(tl,0,temp);
}
//if(opcode[i]==0x39)
/*if(opcode[i]==0x39||opcode[i]==0x31)
{
emit_pusha();
emit_readword((int)&last_count,ECX);
if(get_reg(i_regs->regmap,CCREG)<0)
emit_loadreg(CCREG,HOST_CCREG);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_addimm(HOST_CCREG,2*ccadj[i],HOST_CCREG);
emit_writeword(HOST_CCREG,(int)&r4300_cp0_regs()[CP0_COUNT_REG]);
emit_call((int)memdebug);
emit_popa();
}*/
}
#ifndef multdiv_assemble
void multdiv_assemble(int i,struct regstat *i_regs)
{
DebugMessage(M64MSG_ERROR, "Need multdiv_assemble for this architecture.");
exit(1);
}
#endif
static void mov_assemble(int i,struct regstat *i_regs)
{
//if(opcode2[i]==0x10||opcode2[i]==0x12) { // MFHI/MFLO
//if(opcode2[i]==0x11||opcode2[i]==0x13) { // MTHI/MTLO
if(rt1[i]) {
signed char sh,sl,th,tl;
th=get_reg(i_regs->regmap,rt1[i]|64);
tl=get_reg(i_regs->regmap,rt1[i]);
//assert(tl>=0);
if(tl>=0) {
sh=get_reg(i_regs->regmap,rs1[i]|64);
sl=get_reg(i_regs->regmap,rs1[i]);
if(sl>=0) emit_mov(sl,tl);
else emit_loadreg(rs1[i],tl);
if(th>=0) {
if(sh>=0) emit_mov(sh,th);
else emit_loadreg(rs1[i]|64,th);
}
}
}
}
#ifndef fconv_assemble
void fconv_assemble(int i,struct regstat *i_regs)
{
DebugMessage(M64MSG_ERROR, "Need fconv_assemble for this architecture.");
exit(1);
}
#endif
#if 0
static void float_assemble(int i,struct regstat *i_regs)
{
DebugMessage(M64MSG_ERROR, "Need float_assemble for this architecture.");
exit(1);
}
#endif
static void syscall_assemble(int i,struct regstat *i_regs)
{
signed char ccreg=get_reg(i_regs->regmap,CCREG);
assert(ccreg==HOST_CCREG);
assert(!is_delayslot);
emit_movimm(start+i*4,EAX); // Get PC
emit_addimm(HOST_CCREG,CLOCK_DIVIDER*ccadj[i],HOST_CCREG); // CHECK: is this right? There should probably be an extra cycle...
emit_jmp((int)jump_syscall);
}
static void ds_assemble(int i,struct regstat *i_regs)
{
is_delayslot=1;
switch(itype[i]) {
case ALU:
alu_assemble(i,i_regs);break;
case IMM16:
imm16_assemble(i,i_regs);break;
case SHIFT:
shift_assemble(i,i_regs);break;
case SHIFTIMM:
shiftimm_assemble(i,i_regs);break;
case LOAD:
load_assemble(i,i_regs);break;
case LOADLR:
loadlr_assemble(i,i_regs);break;
case STORE:
store_assemble(i,i_regs);break;
case STORELR:
storelr_assemble(i,i_regs);break;
case COP0:
cop0_assemble(i,i_regs);break;
case COP1:
cop1_assemble(i,i_regs);break;
case C1LS:
c1ls_assemble(i,i_regs);break;
case FCONV:
fconv_assemble(i,i_regs);break;
case FLOAT:
float_assemble(i,i_regs);break;
case FCOMP:
fcomp_assemble(i,i_regs);break;
case MULTDIV:
multdiv_assemble(i,i_regs);break;
case MOV:
mov_assemble(i,i_regs);break;
case SYSCALL:
case SPAN:
case UJUMP:
case RJUMP:
case CJUMP:
case SJUMP:
case FJUMP:
DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
}
is_delayslot=0;
}
// Is the branch target a valid internal jump?
static int internal_branch(uint64_t i_is32,int addr)
{
if(addr&1) return 0; // Indirect (register) jump
if((u_int)addr>=start && (u_int)addr<start+slen*4-4)
{
int t=(addr-start)>>2;
// Delay slots are not valid branch targets
//if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
// 64 -> 32 bit transition requires a recompile
/*if(is32[t]&~unneeded_reg_upper[t]&~i_is32)
{
if(requires_32bit[t]&~i_is32) DebugMessage(M64MSG_VERBOSE, "optimizable: no");
else DebugMessage(M64MSG_VERBOSE, "optimizable: yes");
}*/
//if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
if(requires_32bit[t]&~i_is32) return 0;
else return 1;
}
return 0;
}
#ifndef wb_invalidate
static void wb_invalidate(signed char pre[],signed char entry[],uint64_t dirty,uint64_t is32,
uint64_t u,uint64_t uu)
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(pre[hr]!=entry[hr]) {
if(pre[hr]>=0) {
if((dirty>>hr)&1) {
if(get_reg(entry,pre[hr])<0) {
if(pre[hr]<64) {
if(!((u>>pre[hr])&1)) {
emit_storereg(pre[hr],hr);
if( ((is32>>pre[hr])&1) && !((uu>>pre[hr])&1) ) {
emit_sarimm(hr,31,hr);
emit_storereg(pre[hr]|64,hr);
}
}
}else{
if(!((uu>>(pre[hr]&63))&1) && !((is32>>(pre[hr]&63))&1)) {
emit_storereg(pre[hr],hr);
}
}
}
}
}
}
}
}
// Move from one register to another (no writeback)
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(pre[hr]!=entry[hr]) {
if(pre[hr]>=0&&(pre[hr]&63)<TEMPREG) {
int nr;
if((nr=get_reg(entry,pre[hr]))>=0) {
emit_mov(hr,nr);
}
}
}
}
}
}
#endif
// Load the specified registers
// This only loads the registers given as arguments because
// we don't want to load things that will be overwritten
static void load_regs(signed char entry[],signed char regmap[],int is32,int rs1,int rs2)
{
int hr;
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
if(entry[hr]!=regmap[hr]) {
if(regmap[hr]==rs1||regmap[hr]==rs2)
{
if(regmap[hr]==0) {
emit_zeroreg(hr);
}
else
{
emit_loadreg(regmap[hr],hr);
}
}
}
}
}
//Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
if(entry[hr]!=regmap[hr]) {
if(regmap[hr]-64==rs1||regmap[hr]-64==rs2)
{
assert(regmap[hr]!=64);
if((is32>>(regmap[hr]&63))&1) {
int lr=get_reg(regmap,regmap[hr]-64);
if(lr>=0)
emit_sarimm(lr,31,hr);
else
emit_loadreg(regmap[hr],hr);
}
else
{
emit_loadreg(regmap[hr],hr);
}
}
}
}
}
}
// Load registers prior to the start of a loop
// so that they are not loaded within the loop
static void loop_preload(signed char pre[],signed char entry[])
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(pre[hr]!=entry[hr]) {
if(entry[hr]>=0) {
if(get_reg(pre,entry[hr])<0) {
assem_debug("loop preload:");
//DebugMessage(M64MSG_VERBOSE, "loop preload: %d",hr);
if(entry[hr]==0) {
emit_zeroreg(hr);
}
else if(entry[hr]<TEMPREG)
{
emit_loadreg(entry[hr],hr);
}
else if(entry[hr]-64<TEMPREG)
{
emit_loadreg(entry[hr],hr);
}
}
}
}
}
}
}
// Generate address for load/store instruction
static void address_generation(int i,struct regstat *i_regs,signed char entry[])
{
if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
int ra;
int agr=AGEN1+(i&1);
int mgr=MGEN1+(i&1);
if(itype[i]==LOAD) {
ra=get_reg(i_regs->regmap,rt1[i]);
if(ra<0) ra=get_reg(i_regs->regmap,-1);
assert(ra>=0);
}
if(itype[i]==LOADLR) {
ra=get_reg(i_regs->regmap,FTEMP);
}
if(itype[i]==STORE||itype[i]==STORELR) {
ra=get_reg(i_regs->regmap,agr);
if(ra<0) ra=get_reg(i_regs->regmap,-1);
}
if(itype[i]==C1LS) {
if (opcode[i]==0x31||opcode[i]==0x35) // LWC1/LDC1
ra=get_reg(i_regs->regmap,FTEMP);
else { // SWC1/SDC1
ra=get_reg(i_regs->regmap,agr);
if(ra<0) ra=get_reg(i_regs->regmap,-1);
}
}
int rs=get_reg(i_regs->regmap,rs1[i]);
int rm=get_reg(i_regs->regmap,TLREG);
if(ra>=0) {
int offset=imm[i];
int c=(i_regs->wasconst>>rs)&1;
if(rs1[i]==0) {
// Using r0 as a base address
/*if(rm>=0) {
if(!entry||entry[rm]!=mgr) {
generate_map_const(offset,rm);
} // else did it in the previous cycle
}*/
if(!entry||entry[ra]!=agr) {
if (opcode[i]==0x22||opcode[i]==0x26) {
emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
}else if (opcode[i]==0x1a||opcode[i]==0x1b) {
emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
}else{
emit_movimm(offset,ra);
}
} // else did it in the previous cycle
}
else if(rs<0) {
if(!entry||entry[ra]!=rs1[i])
emit_loadreg(rs1[i],ra);
//if(!entry||entry[ra]!=rs1[i])
// DebugMessage(M64MSG_VERBOSE, "poor load scheduling!");
}
else if(c) {
if(rm>=0) {
if(!entry||entry[rm]!=mgr) {
if(itype[i]==STORE||itype[i]==STORELR||opcode[i]==0x39||opcode[i]==0x3D) {
// Stores to memory go thru the mapper to detect self-modifying
// code, loads don't.
if((unsigned int)(constmap[i][rs]+offset)>=0xC0000000 ||
(unsigned int)(constmap[i][rs]+offset)<0x80800000 )
generate_map_const(constmap[i][rs]+offset,rm);
}else{
if((signed int)(constmap[i][rs]+offset)>=(signed int)0xC0000000)
generate_map_const(constmap[i][rs]+offset,rm);
}
}
}
if(rs1[i]!=rt1[i]||itype[i]!=LOAD) {
if(!entry||entry[ra]!=agr) {
if (opcode[i]==0x22||opcode[i]==0x26) { // LWL/LWR
#ifdef RAM_OFFSET
if((signed int)constmap[i][rs]+offset<(signed int)0x80800000)
emit_movimm(((constmap[i][rs]+offset)&0xFFFFFFFC)+(int)g_dev.ri.rdram.dram-0x80000000,ra);
else
#endif
emit_movimm((constmap[i][rs]+offset)&0xFFFFFFFC,ra);
}else if (opcode[i]==0x1a||opcode[i]==0x1b) { // LDL/LDR
#ifdef RAM_OFFSET
if((signed int)constmap[i][rs]+offset<(signed int)0x80800000)
emit_movimm(((constmap[i][rs]+offset)&0xFFFFFFF8)+(int)g_dev.ri.rdram.dram-0x80000000,ra);
else
#endif
emit_movimm((constmap[i][rs]+offset)&0xFFFFFFF8,ra);
}else{
#ifdef HOST_IMM_ADDR32
if((itype[i]!=LOAD&&opcode[i]!=0x31&&opcode[i]!=0x35) ||
(using_tlb&&((signed int)constmap[i][rs]+offset)>=(signed int)0xC0000000))
#endif
#ifdef RAM_OFFSET
if((itype[i]==LOAD||opcode[i]==0x31||opcode[i]==0x35)&&(signed int)constmap[i][rs]+offset<(signed int)0x80800000)
emit_movimm(constmap[i][rs]+offset+(int)g_dev.ri.rdram.dram-0x80000000,ra);
else
#endif
emit_movimm(constmap[i][rs]+offset,ra);
}
} // else did it in the previous cycle
} // else load_consts already did it
}
if(offset&&!c&&rs1[i]) {
if(rs>=0) {
emit_addimm(rs,offset,ra);
}else{
emit_addimm(ra,offset,ra);
}
}
}
}
// Preload constants for next instruction
if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
int agr,ra;
#ifndef HOST_IMM_ADDR32
// Mapper entry
agr=MGEN1+((i+1)&1);
ra=get_reg(i_regs->regmap,agr);
if(ra>=0) {
int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
int offset=imm[i+1];
int c=(regs[i+1].wasconst>>rs)&1;
if(c) {
if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) {
// Stores to memory go thru the mapper to detect self-modifying
// code, loads don't.
if((unsigned int)(constmap[i+1][rs]+offset)>=0xC0000000 ||
(unsigned int)(constmap[i+1][rs]+offset)<0x80800000 )
generate_map_const(constmap[i+1][rs]+offset,ra);
}else{
if((signed int)(constmap[i+1][rs]+offset)>=(signed int)0xC0000000)
generate_map_const(constmap[i+1][rs]+offset,ra);
}
}
/*else if(rs1[i]==0) {
generate_map_const(offset,ra);
}*/
}
#endif
// Actual address
agr=AGEN1+((i+1)&1);
ra=get_reg(i_regs->regmap,agr);
if(ra>=0) {
int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
int offset=imm[i+1];
int c=(regs[i+1].wasconst>>rs)&1;
if(c&&(rs1[i+1]!=rt1[i+1]||itype[i+1]!=LOAD)) {
if (opcode[i+1]==0x22||opcode[i+1]==0x26) { // LWL/LWR
#ifdef RAM_OFFSET
if((signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
emit_movimm(((constmap[i+1][rs]+offset)&0xFFFFFFFC)+(int)g_dev.ri.rdram.dram-0x80000000,ra);
else
#endif
emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFFC,ra);
}else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) { // LDL/LDR
#ifdef RAM_OFFSET
if((signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
emit_movimm(((constmap[i+1][rs]+offset)&0xFFFFFFF8)+(int)g_dev.ri.rdram.dram-0x80000000,ra);
else
#endif
emit_movimm((constmap[i+1][rs]+offset)&0xFFFFFFF8,ra);
}else{
#ifdef HOST_IMM_ADDR32
if((itype[i+1]!=LOAD&&opcode[i+1]!=0x31&&opcode[i+1]!=0x35) ||
(using_tlb&&((signed int)constmap[i+1][rs]+offset)>=(signed int)0xC0000000))
#endif
#ifdef RAM_OFFSET
if((itype[i+1]==LOAD||opcode[i+1]==0x31||opcode[i+1]==0x35)&&(signed int)constmap[i+1][rs]+offset<(signed int)0x80800000)
emit_movimm(constmap[i+1][rs]+offset+(int)g_dev.ri.rdram.dram-0x80000000,ra);
else
#endif
emit_movimm(constmap[i+1][rs]+offset,ra);
}
}
else if(rs1[i+1]==0) {
// Using r0 as a base address
if (opcode[i+1]==0x22||opcode[i+1]==0x26) {
emit_movimm(offset&0xFFFFFFFC,ra); // LWL/LWR
}else if (opcode[i+1]==0x1a||opcode[i+1]==0x1b) {
emit_movimm(offset&0xFFFFFFF8,ra); // LDL/LDR
}else{
emit_movimm(offset,ra);
}
}
}
}
}
static int get_final_value(int hr, int i, int *value)
{
int reg=regs[i].regmap[hr];
while(i<slen-1) {
if(regs[i+1].regmap[hr]!=reg) break;
if(!((regs[i+1].isconst>>hr)&1)) break;
if(bt[i+1]) break;
i++;
}
if(i<slen-1) {
if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP) {
*value=constmap[i][hr];
return 1;
}
if(!bt[i+1]) {
if(itype[i+1]==UJUMP||itype[i+1]==RJUMP||itype[i+1]==CJUMP||itype[i+1]==SJUMP) {
// Load in delay slot, out-of-order execution
if(itype[i+2]==LOAD&&rs1[i+2]==reg&&rt1[i+2]==reg&&((regs[i+1].wasconst>>hr)&1))
{
#ifdef HOST_IMM_ADDR32
if(!using_tlb||((signed int)constmap[i][hr]+imm[i+2])<(signed int)0xC0000000) return 0;
#endif
#ifdef RAM_OFFSET
if((signed int)constmap[i][hr]+imm[i+2]<(signed int)0x80800000)
*value=constmap[i][hr]+imm[i+2]+(int)g_dev.ri.rdram.dram-0x80000000;
else
#endif
// Precompute load address
*value=constmap[i][hr]+imm[i+2];
return 1;
}
}
if(itype[i+1]==LOAD&&rs1[i+1]==reg&&rt1[i+1]==reg)
{
#ifdef HOST_IMM_ADDR32
if(!using_tlb||((signed int)constmap[i][hr]+imm[i+1])<(signed int)0xC0000000) return 0;
#endif
#ifdef RAM_OFFSET
if((signed int)constmap[i][hr]+imm[i+1]<(signed int)0x80800000)
*value=constmap[i][hr]+imm[i+1]+(int)g_dev.ri.rdram.dram-0x80000000;
else
#endif
// Precompute load address
*value=constmap[i][hr]+imm[i+1];
//DebugMessage(M64MSG_VERBOSE, "c=%x imm=%x",(int)constmap[i][hr],imm[i+1]);
return 1;
}
}
}
*value=constmap[i][hr];
//DebugMessage(M64MSG_VERBOSE, "c=%x",(int)constmap[i][hr]);
if(i==slen-1) return 1;
if(reg<64) {
return !((unneeded_reg[i+1]>>reg)&1);
}else{
return !((unneeded_reg_upper[i+1]>>reg)&1);
}
}
// Load registers with known constants
static void load_consts(signed char pre[],signed char regmap[],int is32,int i)
{
int hr;
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
//if(entry[hr]!=regmap[hr]) {
if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
int value;
if(get_final_value(hr,i,&value)) {
if(value==0) {
emit_zeroreg(hr);
}
else {
emit_movimm(value,hr);
}
}
}
}
}
}
// Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0) {
//if(entry[hr]!=regmap[hr]) {
if(i==0||!((regs[i-1].isconst>>hr)&1)||pre[hr]!=regmap[hr]||bt[i]) {
if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
if((is32>>(regmap[hr]&63))&1) {
int lr=get_reg(regmap,regmap[hr]-64);
assert(lr>=0);
emit_sarimm(lr,31,hr);
}
else
{
int value;
if(get_final_value(hr,i,&value)) {
if(value==0) {
emit_zeroreg(hr);
}
else {
emit_movimm(value,hr);
}
}
}
}
}
}
}
}
static void load_all_consts(signed char regmap[],int is32,u_int dirty,int i)
{
int hr;
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
if(((regs[i].isconst>>hr)&1)&&regmap[hr]<64&&regmap[hr]>0) {
int value=constmap[i][hr];
if(value==0) {
emit_zeroreg(hr);
}
else {
emit_movimm(value,hr);
}
}
}
}
// Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regmap[hr]>=0&&((dirty>>hr)&1)) {
if(((regs[i].isconst>>hr)&1)&&regmap[hr]>64) {
if((is32>>(regmap[hr]&63))&1) {
int lr=get_reg(regmap,regmap[hr]-64);
assert(lr>=0);
emit_sarimm(lr,31,hr);
}
else
{
int value=constmap[i][hr];
if(value==0) {
emit_zeroreg(hr);
}
else {
emit_movimm(value,hr);
}
}
}
}
}
}
// Write out all dirty registers (except cycle count)
static void wb_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty)
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(i_regmap[hr]>0) {
if(i_regmap[hr]!=CCREG) {
if((i_dirty>>hr)&1) {
if(i_regmap[hr]<64) {
emit_storereg(i_regmap[hr],hr);
if( ((i_is32>>i_regmap[hr])&1) ) {
#ifdef DESTRUCTIVE_WRITEBACK
emit_sarimm(hr,31,hr);
emit_storereg(i_regmap[hr]|64,hr);
#else
emit_sarimm(hr,31,HOST_TEMPREG);
emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
#endif
}
}else{
if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
emit_storereg(i_regmap[hr],hr);
}
}
}
}
}
}
}
}
// Write out dirty registers that we need to reload (pair with load_needed_regs)
// This writes the registers not written by store_regs_bt
static void wb_needed_dirtys(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
{
int hr;
int t=(addr-start)>>2;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(i_regmap[hr]>0) {
if(i_regmap[hr]!=CCREG) {
if(i_regmap[hr]==regs[t].regmap_entry[hr] && ((regs[t].dirty>>hr)&1) && !(((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
if((i_dirty>>hr)&1) {
if(i_regmap[hr]<64) {
emit_storereg(i_regmap[hr],hr);
if( ((i_is32>>i_regmap[hr])&1) ) {
#ifdef DESTRUCTIVE_WRITEBACK
emit_sarimm(hr,31,hr);
emit_storereg(i_regmap[hr]|64,hr);
#else
emit_sarimm(hr,31,HOST_TEMPREG);
emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
#endif
}
}else{
if( !((i_is32>>(i_regmap[hr]&63))&1) ) {
emit_storereg(i_regmap[hr],hr);
}
}
}
}
}
}
}
}
}
// Load all registers (except cycle count)
static void load_all_regs(signed char i_regmap[])
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(i_regmap[hr]==0) {
emit_zeroreg(hr);
}
else
if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
{
emit_loadreg(i_regmap[hr],hr);
}
}
}
}
// Load all current registers also needed by next instruction
static void load_needed_regs(signed char i_regmap[],signed char next_regmap[])
{
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(get_reg(next_regmap,i_regmap[hr])>=0) {
if(i_regmap[hr]==0) {
emit_zeroreg(hr);
}
else
if(i_regmap[hr]>0 && (i_regmap[hr]&63)<TEMPREG && i_regmap[hr]!=CCREG)
{
emit_loadreg(i_regmap[hr],hr);
}
}
}
}
}
// Load all regs, storing cycle count if necessary
static void load_regs_entry(int t)
{
int hr;
if(is_ds[t]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER,HOST_CCREG);
else if(ccadj[t]) emit_addimm(HOST_CCREG,-ccadj[t]*CLOCK_DIVIDER,HOST_CCREG);
if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
emit_storereg(CCREG,HOST_CCREG);
}
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
if(regs[t].regmap_entry[hr]==0) {
emit_zeroreg(hr);
}
else if(regs[t].regmap_entry[hr]!=CCREG)
{
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
}
}
// Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
assert(regs[t].regmap_entry[hr]!=64);
if((regs[t].was32>>(regs[t].regmap_entry[hr]&63))&1) {
int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
if(lr<0) {
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
else
{
emit_sarimm(lr,31,hr);
}
}
else
{
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
}
}
}
// Store dirty registers prior to branch
static void store_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
{
if(internal_branch(i_is32,addr))
{
int t=(addr-start)>>2;
int hr;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(i_regmap[hr]>0 && i_regmap[hr]!=CCREG) {
if(i_regmap[hr]!=regs[t].regmap_entry[hr] || !((regs[t].dirty>>hr)&1) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
if((i_dirty>>hr)&1) {
if(i_regmap[hr]<64) {
if(!((unneeded_reg[t]>>i_regmap[hr])&1)) {
emit_storereg(i_regmap[hr],hr);
if( ((i_is32>>i_regmap[hr])&1) && !((unneeded_reg_upper[t]>>i_regmap[hr])&1) ) {
#ifdef DESTRUCTIVE_WRITEBACK
emit_sarimm(hr,31,hr);
emit_storereg(i_regmap[hr]|64,hr);
#else
emit_sarimm(hr,31,HOST_TEMPREG);
emit_storereg(i_regmap[hr]|64,HOST_TEMPREG);
#endif
}
}
}else{
if( !((i_is32>>(i_regmap[hr]&63))&1) && !((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1) ) {
emit_storereg(i_regmap[hr],hr);
}
}
}
}
}
}
}
}
else
{
// Branch out of this block, write out all dirty regs
wb_dirtys(i_regmap,i_is32,i_dirty);
}
}
// Load all needed registers for branch target
static void load_regs_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
{
//if(addr>=start && addr<(start+slen*4))
if(internal_branch(i_is32,addr))
{
int t=(addr-start)>>2;
int hr;
// Store the cycle count before loading something else
if(i_regmap[HOST_CCREG]!=CCREG) {
assert(i_regmap[HOST_CCREG]==-1);
}
if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) {
emit_storereg(CCREG,HOST_CCREG);
}
// Load 32-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=0&&regs[t].regmap_entry[hr]<TEMPREG) {
#ifdef DESTRUCTIVE_WRITEBACK
if(i_regmap[hr]!=regs[t].regmap_entry[hr] || ( !((regs[t].dirty>>hr)&1) && ((i_dirty>>hr)&1) && (((i_is32&~unneeded_reg_upper[t])>>i_regmap[hr])&1) ) || (((i_is32&~regs[t].was32&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)) {
#else
if(i_regmap[hr]!=regs[t].regmap_entry[hr] ) {
#endif
if(regs[t].regmap_entry[hr]==0) {
emit_zeroreg(hr);
}
else if(regs[t].regmap_entry[hr]!=CCREG)
{
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
}
}
}
//Load 64-bit regs
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regs[t].regmap_entry[hr]>=64&&regs[t].regmap_entry[hr]<TEMPREG+64) {
if(i_regmap[hr]!=regs[t].regmap_entry[hr]) {
assert(regs[t].regmap_entry[hr]!=64);
if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
if(lr<0) {
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
else
{
emit_sarimm(lr,31,hr);
}
}
else
{
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
}
else if((i_is32>>(regs[t].regmap_entry[hr]&63))&1) {
int lr=get_reg(regs[t].regmap_entry,regs[t].regmap_entry[hr]-64);
if(lr<0) {
emit_loadreg(regs[t].regmap_entry[hr],hr);
}
else
{
emit_sarimm(lr,31,hr);
}
}
}
}
}
}
static int match_bt(signed char i_regmap[],uint64_t i_is32,uint64_t i_dirty,int addr)
{
if((u_int)addr>=start && (u_int)addr<start+slen*4-4)
{
int t=(addr-start)>>2;
int hr;
if(regs[t].regmap_entry[HOST_CCREG]!=CCREG) return 0;
for(hr=0;hr<HOST_REGS;hr++)
{
if(hr!=EXCLUDE_REG)
{
if(i_regmap[hr]!=regs[t].regmap_entry[hr])
{
if(regs[t].regmap_entry[hr]>=0&&(regs[t].regmap_entry[hr]|64)<TEMPREG+64)
{
return 0;
}
else
if((i_dirty>>hr)&1)
{
if(i_regmap[hr]<TEMPREG)
{
if(!((unneeded_reg[t]>>i_regmap[hr])&1))
return 0;
}
else if(i_regmap[hr]>=64&&i_regmap[hr]<TEMPREG+64)
{
if(!((unneeded_reg_upper[t]>>(i_regmap[hr]&63))&1))
return 0;
}
}
}
else // Same register but is it 32-bit or dirty?
if(i_regmap[hr]>=0)
{
if(!((regs[t].dirty>>hr)&1))
{
if((i_dirty>>hr)&1)
{
if(!((unneeded_reg[t]>>i_regmap[hr])&1))
{
//DebugMessage(M64MSG_VERBOSE, "%x: dirty no match",addr);
return 0;
}
}
}
if((((regs[t].was32^i_is32)&~unneeded_reg_upper[t])>>(i_regmap[hr]&63))&1)
{
//DebugMessage(M64MSG_VERBOSE, "%x: is32 no match",addr);
return 0;
}
}
}
}
//if(is32[t]&~unneeded_reg_upper[t]&~i_is32) return 0;
if(requires_32bit[t]&~i_is32) return 0;
// Delay slots are not valid branch targets
//if(t>0&&(itype[t-1]==RJUMP||itype[t-1]==UJUMP||itype[t-1]==CJUMP||itype[t-1]==SJUMP||itype[t-1]==FJUMP)) return 0;
// Delay slots require additional processing, so do not match
if(is_ds[t]) return 0;
}
else
{
int hr;
for(hr=0;hr<HOST_REGS;hr++)
{
if(hr!=EXCLUDE_REG)
{
if(i_regmap[hr]>=0)
{
if(hr!=HOST_CCREG||i_regmap[hr]!=CCREG)
{
if((i_dirty>>hr)&1)
{
return 0;
}
}
}
}
}
}
return 1;
}
// Used when a branch jumps into the delay slot of another branch
static void ds_assemble_entry(int i)
{
int t=(ba[i]-start)>>2;
if(!instr_addr[t]) instr_addr[t]=(u_int)out;
assem_debug("Assemble delay slot at %x",ba[i]);
assem_debug("<->");
if(regs[t].regmap_entry[HOST_CCREG]==CCREG&&regs[t].regmap[HOST_CCREG]!=CCREG)
wb_register(CCREG,regs[t].regmap_entry,regs[t].wasdirty,regs[t].was32);
load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,rs1[t],rs2[t]);
address_generation(t,&regs[t],regs[t].regmap_entry);
if(itype[t]==LOAD||itype[t]==LOADLR||itype[t]==STORE||itype[t]==STORELR||itype[t]==C1LS)
load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,MMREG,ROREG);
if(itype[t]==STORE||itype[t]==STORELR||(opcode[t]&0x3b)==0x39)
load_regs(regs[t].regmap_entry,regs[t].regmap,regs[t].was32,INVCP,INVCP);
cop1_usable=0;
is_delayslot=0;
switch(itype[t]) {
case ALU:
alu_assemble(t,&regs[t]);break;
case IMM16:
imm16_assemble(t,&regs[t]);break;
case SHIFT:
shift_assemble(t,&regs[t]);break;
case SHIFTIMM:
shiftimm_assemble(t,&regs[t]);break;
case LOAD:
load_assemble(t,&regs[t]);break;
case LOADLR:
loadlr_assemble(t,&regs[t]);break;
case STORE:
store_assemble(t,&regs[t]);break;
case STORELR:
storelr_assemble(t,&regs[t]);break;
case COP0:
cop0_assemble(t,&regs[t]);break;
case COP1:
cop1_assemble(t,&regs[t]);break;
case C1LS:
c1ls_assemble(t,&regs[t]);break;
case FCONV:
fconv_assemble(t,&regs[t]);break;
case FLOAT:
float_assemble(t,&regs[t]);break;
case FCOMP:
fcomp_assemble(t,&regs[t]);break;
case MULTDIV:
multdiv_assemble(t,&regs[t]);break;
case MOV:
mov_assemble(t,&regs[t]);break;
case SYSCALL:
case SPAN:
case UJUMP:
case RJUMP:
case CJUMP:
case SJUMP:
case FJUMP:
DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
}
store_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
load_regs_bt(regs[t].regmap,regs[t].is32,regs[t].dirty,ba[i]+4);
if(internal_branch(regs[t].is32,ba[i]+4))
assem_debug("branch: internal");
else
assem_debug("branch: external");
assert(internal_branch(regs[t].is32,ba[i]+4));
add_to_linker((int)out,ba[i]+4,internal_branch(regs[t].is32,ba[i]+4));
emit_jmp(0);
}
static void do_cc(int i,signed char i_regmap[],int *adj,int addr,int taken,int invert)
{
int count;
int jaddr;
int idle=0;
if(itype[i]==RJUMP)
{
*adj=0;
}
//if(ba[i]>=start && ba[i]<(start+slen*4))
if(internal_branch(branch_regs[i].is32,ba[i]))
{
int t=(ba[i]-start)>>2;
if(is_ds[t]) *adj=-1; // Branch into delay slot adds an extra cycle
else *adj=ccadj[t];
}
else
{
*adj=0;
}
count=ccadj[i];
if(taken==TAKEN && i==(ba[i]-start)>>2 && source[i+1]==0) {
// Idle loop
if(count&1) emit_addimm_and_set_flags(2*(count+2),HOST_CCREG);
idle=(int)out;
//emit_subfrommem(&idlecount,HOST_CCREG); // Count idle cycles
emit_andimm(HOST_CCREG,3,HOST_CCREG);
jaddr=(int)out;
emit_jmp(0);
}
else if(*adj==0||invert) {
emit_addimm_and_set_flags(CLOCK_DIVIDER*(count+2),HOST_CCREG);
jaddr=(int)out;
emit_jns(0);
}
else
{
emit_cmpimm(HOST_CCREG,-(int)CLOCK_DIVIDER*(count+2));
jaddr=(int)out;
emit_jns(0);
}
add_stub(CC_STUB,jaddr,idle?idle:(int)out,(*adj==0||invert||idle)?0:(count+2),i,addr,taken,0);
}
static void do_ccstub(int n)
{
literal_pool(256);
assem_debug("do_ccstub %x",start+stubs[n][4]*4);
set_jump_target(stubs[n][1],(int)out);
int i=stubs[n][4];
if(stubs[n][6]==NULLDS) {
// Delay slot instruction is nullified ("likely" branch)
wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
}
else if(stubs[n][6]!=TAKEN) {
wb_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty);
}
else {
if(internal_branch(branch_regs[i].is32,ba[i]))
wb_needed_dirtys(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
}
if(stubs[n][5]!=-1)
{
// Save PC as return address
emit_movimm(stubs[n][5],EAX);
emit_writeword(EAX,(int)&pcaddr);
}
else
{
// Return address depends on which way the branch goes
if(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
int s1l=get_reg(branch_regs[i].regmap,rs1[i]);
int s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
int s2l=get_reg(branch_regs[i].regmap,rs2[i]);
int s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
if(rs1[i]==0)
{
s1l=s2l;s1h=s2h;
s2l=s2h=-1;
}
else if(rs2[i]==0)
{
s2l=s2h=-1;
}
if((branch_regs[i].is32>>rs1[i])&(branch_regs[i].is32>>rs2[i])&1) {
s1h=s2h=-1;
}
assert(s1l>=0);
#ifdef DESTRUCTIVE_WRITEBACK
if(rs1[i]) {
if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs1[i])&1)
emit_loadreg(rs1[i],s1l);
}
else {
if((branch_regs[i].dirty>>s1l)&(branch_regs[i].is32>>rs2[i])&1)
emit_loadreg(rs2[i],s1l);
}
if(s2l>=0)
if((branch_regs[i].dirty>>s2l)&(branch_regs[i].is32>>rs2[i])&1)
emit_loadreg(rs2[i],s2l);
#endif
int hr=0;
int addr,alt,ntaddr;
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
(branch_regs[i].regmap[hr]&63)!=rs1[i] &&
(branch_regs[i].regmap[hr]&63)!=rs2[i] )
{
addr=hr++;break;
}
hr++;
}
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
(branch_regs[i].regmap[hr]&63)!=rs1[i] &&
(branch_regs[i].regmap[hr]&63)!=rs2[i] )
{
alt=hr++;break;
}
hr++;
}
if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
{
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
(branch_regs[i].regmap[hr]&63)!=rs1[i] &&
(branch_regs[i].regmap[hr]&63)!=rs2[i] )
{
ntaddr=hr;break;
}
hr++;
}
assert(hr<HOST_REGS);
}
if((opcode[i]&0x2f)==4) // BEQ
{
#ifdef HAVE_CMOV_IMM
if(s1h<0) {
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
}
else
#endif
{
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmovne_reg(alt,addr);
}
}
if((opcode[i]&0x2f)==5) // BNE
{
#ifdef HAVE_CMOV_IMM
if(s1h<0) {
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
}
else
#endif
{
emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmovne_reg(alt,addr);
}
}
if((opcode[i]&0x2f)==6) // BLEZ
{
//emit_movimm(ba[i],alt);
//emit_movimm(start+i*4+8,addr);
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
emit_cmpimm(s1l,1);
if(s1h>=0) emit_mov(addr,ntaddr);
emit_cmovl_reg(alt,addr);
if(s1h>=0) {
emit_test(s1h,s1h);
emit_cmovne_reg(ntaddr,addr);
emit_cmovs_reg(alt,addr);
}
}
if((opcode[i]&0x2f)==7) // BGTZ
{
//emit_movimm(ba[i],addr);
//emit_movimm(start+i*4+8,ntaddr);
emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
emit_cmpimm(s1l,1);
if(s1h>=0) emit_mov(addr,alt);
emit_cmovl_reg(ntaddr,addr);
if(s1h>=0) {
emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
emit_cmovs_reg(ntaddr,addr);
}
}
if((opcode[i]==1)&&(opcode2[i]&0x2D)==0) // BLTZ
{
//emit_movimm(ba[i],alt);
//emit_movimm(start+i*4+8,addr);
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
if(s1h>=0) emit_test(s1h,s1h);
else emit_test(s1l,s1l);
emit_cmovs_reg(alt,addr);
}
if((opcode[i]==1)&&(opcode2[i]&0x2D)==1) // BGEZ
{
//emit_movimm(ba[i],addr);
//emit_movimm(start+i*4+8,alt);
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
if(s1h>=0) emit_test(s1h,s1h);
else emit_test(s1l,s1l);
emit_cmovs_reg(alt,addr);
}
if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
if(source[i]&0x10000) // BC1T
{
//emit_movimm(ba[i],alt);
//emit_movimm(start+i*4+8,addr);
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
emit_testimm(s1l,0x800000);
emit_cmovne_reg(alt,addr);
}
else // BC1F
{
//emit_movimm(ba[i],addr);
//emit_movimm(start+i*4+8,alt);
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
emit_testimm(s1l,0x800000);
emit_cmovne_reg(alt,addr);
}
}
emit_writeword(addr,(int)&pcaddr);
}
else
if(itype[i]==RJUMP)
{
int r=get_reg(branch_regs[i].regmap,rs1[i]);
if((rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])&&(rs1[i]!=0)) {
r=get_reg(branch_regs[i].regmap,RTEMP);
}
emit_writeword(r,(int)&pcaddr);
}
else {DebugMessage(M64MSG_ERROR, "Unknown branch type in do_ccstub");exit(1);}
}
// Update cycle count
assert(branch_regs[i].regmap[HOST_CCREG]==CCREG||branch_regs[i].regmap[HOST_CCREG]==-1);
if(stubs[n][3]) emit_addimm(HOST_CCREG,CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
emit_call((int)cc_interrupt);
if(stubs[n][3]) emit_addimm(HOST_CCREG,-(int)CLOCK_DIVIDER*stubs[n][3],HOST_CCREG);
if(stubs[n][6]==TAKEN) {
if(internal_branch(branch_regs[i].is32,ba[i]))
load_needed_regs(branch_regs[i].regmap,regs[(ba[i]-start)>>2].regmap_entry);
else if(itype[i]==RJUMP) {
if(get_reg(branch_regs[i].regmap,RTEMP)>=0)
emit_readword((int)&pcaddr,get_reg(branch_regs[i].regmap,RTEMP));
else
emit_loadreg(rs1[i],get_reg(branch_regs[i].regmap,rs1[i]));
}
}else if(stubs[n][6]==NOTTAKEN) {
if(i<slen-2) load_needed_regs(branch_regs[i].regmap,regmap_pre[i+2]);
else load_all_regs(branch_regs[i].regmap);
}else if(stubs[n][6]==NULLDS) {
// Delay slot instruction is nullified ("likely" branch)
if(i<slen-2) load_needed_regs(regs[i].regmap,regmap_pre[i+2]);
else load_all_regs(regs[i].regmap);
}else{
load_all_regs(branch_regs[i].regmap);
}
emit_jmp(stubs[n][2]); // return address
/* This works but uses a lot of memory...
emit_readword((int)&last_count,ECX);
emit_add(HOST_CCREG,ECX,EAX);
emit_writeword(EAX,(int)&r4300_cp0_regs()[CP0_COUNT_REG]);
emit_call((int)gen_interrupt);
emit_readword((int)&r4300_cp0_regs()[CP0_COUNT_REG],HOST_CCREG);
emit_readword((int)&g_dev.r4300.cp0.next_interrupt,EAX);
emit_readword((int)&pending_exception,EBX);
emit_writeword(EAX,(int)&last_count);
emit_sub(HOST_CCREG,EAX,HOST_CCREG);
emit_test(EBX,EBX);
int jne_instr=(int)out;
emit_jne(0);
if(stubs[n][3]) emit_addimm(HOST_CCREG,-2*stubs[n][3],HOST_CCREG);
load_all_regs(branch_regs[i].regmap);
emit_jmp(stubs[n][2]); // return address
set_jump_target(jne_instr,(int)out);
emit_readword((int)&pcaddr,EAX);
// Call get_addr_ht instead of doing the hash table here.
// This code is executed infrequently and takes up a lot of space
// so smaller is better.
emit_storereg(CCREG,HOST_CCREG);
emit_pushreg(EAX);
emit_call((int)get_addr_ht);
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm(ESP,4,ESP);
emit_jmpreg(EAX);*/
}
static void ujump_assemble(int i,struct regstat *i_regs)
{
#ifdef REG_PREFETCH
signed char *i_regmap=i_regs->regmap;
#endif
if(i==(ba[i]-start)>>2) assem_debug("idle loop");
address_generation(i+1,i_regs,regs[i].regmap_entry);
#ifdef REG_PREFETCH
int temp=get_reg(branch_regs[i].regmap,PTEMP);
if(rt1[i]==31&&temp>=0)
{
int return_address=start+i*4+8;
if(get_reg(branch_regs[i].regmap,31)>0)
if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
}
#endif
ds_assemble(i+1,i_regs);
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded|=1|(1LL<<rt1[i]);
bc_unneeded_upper|=1|(1LL<<rt1[i]);
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
if(rt1[i]==31) {
int rt;
unsigned int return_address;
assert(rt1[i+1]!=31);
assert(rt2[i+1]!=31);
rt=get_reg(branch_regs[i].regmap,31);
assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
//assert(rt>=0);
return_address=start+i*4+8;
if(rt>=0) {
#ifdef USE_MINI_HT
if(internal_branch(branch_regs[i].is32,return_address)) {
int temp=rt+1;
if(temp==EXCLUDE_REG||temp>=HOST_REGS||
branch_regs[i].regmap[temp]>=0)
{
temp=get_reg(branch_regs[i].regmap,-1);
}
#ifdef HOST_TEMPREG
if(temp<0) temp=HOST_TEMPREG;
#endif
if(temp>=0) do_miniht_insert(return_address,rt,temp);
else emit_movimm(return_address,rt);
}
else
#endif
{
#ifdef REG_PREFETCH
if(temp>=0)
{
if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
}
#endif
emit_movimm(return_address,rt); // PC into link register
#ifdef IMM_PREFETCH
emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
#endif
}
}
}
int cc,adj;
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
#ifdef REG_PREFETCH
if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
#endif
do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(internal_branch(branch_regs[i].is32,ba[i]))
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(internal_branch(branch_regs[i].is32,ba[i])&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],internal_branch(branch_regs[i].is32,ba[i]));
emit_jmp(0);
}
}
static void rjump_assemble(int i,struct regstat *i_regs)
{
#ifdef REG_PREFETCH
signed char *i_regmap=i_regs->regmap;
#endif
int temp;
int rs,cc;
rs=get_reg(branch_regs[i].regmap,rs1[i]);
assert(rs>=0);
if((rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])&&(rs1[i]!=0)) {
// Delay slot abuse, make a copy of the branch address register
temp=get_reg(branch_regs[i].regmap,RTEMP);
assert(temp>=0);
assert(regs[i].regmap[temp]==RTEMP);
emit_mov(rs,temp);
rs=temp;
}
address_generation(i+1,i_regs,regs[i].regmap_entry);
#ifdef REG_PREFETCH
if(rt1[i]==31)
{
if((temp=get_reg(branch_regs[i].regmap,PTEMP))>=0) {
int return_address=start+i*4+8;
if(i_regmap[temp]==PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
}
}
#endif
#ifdef USE_MINI_HT
if(rs1[i]==31) {
int rh=get_reg(regs[i].regmap,RHASH);
if(rh>=0) do_preload_rhash(rh);
}
#endif
ds_assemble(i+1,i_regs);
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded|=1|(1LL<<rt1[i]);
bc_unneeded_upper|=1|(1LL<<rt1[i]);
bc_unneeded&=~(1LL<<rs1[i]);
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],CCREG);
if(rt1[i]!=0) {
int rt,return_address;
assert(rt1[i+1]!=rt1[i]);
assert(rt2[i+1]!=rt1[i]);
rt=get_reg(branch_regs[i].regmap,rt1[i]);
assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
assert(rt>=0);
return_address=start+i*4+8;
#ifdef REG_PREFETCH
if(temp>=0)
{
if(i_regmap[temp]!=PTEMP) emit_movimm((int)hash_table[((return_address>>16)^return_address)&0xFFFF],temp);
}
#endif
emit_movimm(return_address,rt); // PC into link register
#ifdef IMM_PREFETCH
emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
#endif
}
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
#ifdef USE_MINI_HT
int rh=get_reg(branch_regs[i].regmap,RHASH);
int ht=get_reg(branch_regs[i].regmap,RHTBL);
if(rs1[i]==31) {
if(regs[i].regmap[rh]!=RHASH) do_preload_rhash(rh);
do_preload_rhtbl(ht);
do_rhash(rs,rh);
}
#endif
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
#ifdef DESTRUCTIVE_WRITEBACK
if((branch_regs[i].dirty>>rs)&(branch_regs[i].is32>>rs1[i])&1) {
if(rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1]) {
emit_loadreg(rs1[i],rs);
}
}
#endif
#ifdef REG_PREFETCH
if(rt1[i]==31&&temp>=0) emit_prefetchreg(temp);
#endif
#ifdef USE_MINI_HT
if(rs1[i]==31) {
do_miniht_load(ht,rh);
}
#endif
//do_cc(i,branch_regs[i].regmap,&adj,-1,TAKEN);
//if(adj) emit_addimm(cc,2*(ccadj[i]+2-adj),cc); // ??? - Shouldn't happen
//assert(adj==0);
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
add_stub(CC_STUB,(int)out,jump_vaddr_reg[rs],0,i,-1,TAKEN,0);
emit_jns(0);
//load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,-1);
#ifdef USE_MINI_HT
if(rs1[i]==31) {
do_miniht_jump(rs,rh,ht);
}
else
#endif
{
//if(rs!=EAX) emit_mov(rs,EAX);
//emit_jmp((int)jump_vaddr_eax);
emit_jmp(jump_vaddr_reg[rs]);
}
/* Check hash table
temp=!rs;
emit_mov(rs,temp);
emit_shrimm(rs,16,rs);
emit_xor(temp,rs,rs);
emit_movzwl_reg(rs,rs);
emit_shlimm(rs,4,rs);
emit_cmpmem_indexed((int)hash_table,rs,temp);
emit_jne((int)out+14);
emit_readword_indexed((int)hash_table+4,rs,rs);
emit_jmpreg(rs);
emit_cmpmem_indexed((int)hash_table+8,rs,temp);
emit_addimm_no_flags(8,rs);
emit_jeq((int)out-17);
// No hit on hash table, call compiler
emit_pushreg(temp);
//DEBUG >
#ifdef DEBUG_CYCLE_COUNT
emit_readword((int)&last_count,ECX);
emit_add(HOST_CCREG,ECX,HOST_CCREG);
emit_readword((int)&g_dev.r4300.cp0.next_interrupt,ECX);
emit_writeword(HOST_CCREG,(int)&r4300_cp0_regs()[CP0_COUNT_REG]);
emit_sub(HOST_CCREG,ECX,HOST_CCREG);
emit_writeword(ECX,(int)&last_count);
#endif
//DEBUG <
emit_storereg(CCREG,HOST_CCREG);
emit_call((int)get_addr);
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm(ESP,4,ESP);
emit_jmpreg(EAX);*/
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(rt1[i]!=31&&i<slen-2&&(((u_int)out)&7)) emit_mov(13,13);
#endif
}
static void cjump_assemble(int i,struct regstat *i_regs)
{
signed char *i_regmap=i_regs->regmap;
int cc;
int match;
match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
assem_debug("match=%d",match);
int s1h,s1l,s2h,s2l;
int prev_cop1_usable=cop1_usable;
int unconditional=0,nop=0;
int only32=0;
int invert=0;
int branch_internal=internal_branch(branch_regs[i].is32,ba[i]);
if(i==(ba[i]-start)>>2) assem_debug("idle loop");
if(!match) invert=1;
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(i>(ba[i]-start)>>2) invert=1;
#endif
if(ooo[i]) {
s1l=get_reg(branch_regs[i].regmap,rs1[i]);
s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
s2l=get_reg(branch_regs[i].regmap,rs2[i]);
s2h=get_reg(branch_regs[i].regmap,rs2[i]|64);
}
else {
s1l=get_reg(i_regmap,rs1[i]);
s1h=get_reg(i_regmap,rs1[i]|64);
s2l=get_reg(i_regmap,rs2[i]);
s2h=get_reg(i_regmap,rs2[i]|64);
}
if(rs1[i]==0&&rs2[i]==0)
{
if(opcode[i]&1) nop=1;
else unconditional=1;
//assert(opcode[i]!=5);
//assert(opcode[i]!=7);
//assert(opcode[i]!=0x15);
//assert(opcode[i]!=0x17);
}
else if(rs1[i]==0)
{
s1l=s2l;s1h=s2h;
s2l=s2h=-1;
only32=(regs[i].was32>>rs2[i])&1;
}
else if(rs2[i]==0)
{
s2l=s2h=-1;
only32=(regs[i].was32>>rs1[i])&1;
}
else {
only32=(regs[i].was32>>rs1[i])&(regs[i].was32>>rs2[i])&1;
}
if(ooo[i]) {
// Out of order execution (delay slot first)
//DebugMessage(M64MSG_VERBOSE, "OOOE");
address_generation(i+1,i_regs,regs[i].regmap_entry);
ds_assemble(i+1,i_regs);
int adj;
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
bc_unneeded|=1;
bc_unneeded_upper|=1;
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
if(unconditional)
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
//do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
//assem_debug("cycle count (adj)");
if(unconditional) {
do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(branch_internal)
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(branch_internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],branch_internal);
emit_jmp(0);
}
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(((u_int)out)&7) emit_addnop(0);
#endif
}
}
else if(nop) {
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
}
else {
int taken=0,nottaken=0,nottaken1=0;
do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
if(!only32)
{
assert(s1h>=0);
if(opcode[i]==4) // BEQ
{
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
nottaken1=(int)out;
emit_jne(1);
}
if(opcode[i]==5) // BNE
{
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
if(invert) taken=(int)out;
else add_to_linker((int)out,ba[i],branch_internal);
emit_jne(0);
}
if(opcode[i]==6) // BLEZ
{
emit_test(s1h,s1h);
if(invert) taken=(int)out;
else add_to_linker((int)out,ba[i],branch_internal);
emit_js(0);
nottaken1=(int)out;
emit_jne(1);
}
if(opcode[i]==7) // BGTZ
{
emit_test(s1h,s1h);
nottaken1=(int)out;
emit_js(1);
if(invert) taken=(int)out;
else add_to_linker((int)out,ba[i],branch_internal);
emit_jne(0);
}
} // if(!only32)
//DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
assert(s1l>=0);
if(opcode[i]==4) // BEQ
{
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
if(invert){
nottaken=(int)out;
emit_jne(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
emit_jeq(0);
}
}
if(opcode[i]==5) // BNE
{
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
if(invert){
nottaken=(int)out;
emit_jeq(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
emit_jne(0);
}
}
if(opcode[i]==6) // BLEZ
{
emit_cmpimm(s1l,1);
if(invert){
nottaken=(int)out;
if(only32) emit_jge(1);
else emit_jae(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
if(only32) emit_jl(0);
else emit_jb(0);
}
}
if(opcode[i]==7) // BGTZ
{
emit_cmpimm(s1l,1);
if(invert){
nottaken=(int)out;
if(only32) emit_jl(1);
else emit_jb(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
if(only32) emit_jge(0);
else emit_jae(0);
}
}
if(invert) {
if(taken) set_jump_target(taken,(int)out);
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(match&&(!branch_internal||!is_ds[(ba[i]-start)>>2])) {
if(adj) {
emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
add_to_linker((int)out,ba[i],branch_internal);
}else{
emit_addnop(13);
add_to_linker((int)out,ba[i],branch_internal*2);
}
emit_jmp(0);
}else
#endif
{
if(adj) emit_addimm(cc,-(int)CLOCK_DIVIDER*adj,cc);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(branch_internal)
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(branch_internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],branch_internal);
emit_jmp(0);
}
}
set_jump_target(nottaken,(int)out);
}
if(nottaken1) set_jump_target(nottaken1,(int)out);
if(adj) {
if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
}
} // (!unconditional)
} // if(ooo)
else
{
// In-order execution (branch first)
//if(likely[i]) DebugMessage(M64MSG_VERBOSE, "IOL");
//else
//DebugMessage(M64MSG_VERBOSE, "IOE");
int taken=0,nottaken=0,nottaken1=0;
if(!unconditional&&!nop) {
if(!only32)
{
assert(s1h>=0);
if((opcode[i]&0x2f)==4) // BEQ
{
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
nottaken1=(int)out;
emit_jne(2);
}
if((opcode[i]&0x2f)==5) // BNE
{
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
taken=(int)out;
emit_jne(1);
}
if((opcode[i]&0x2f)==6) // BLEZ
{
emit_test(s1h,s1h);
taken=(int)out;
emit_js(1);
nottaken1=(int)out;
emit_jne(2);
}
if((opcode[i]&0x2f)==7) // BGTZ
{
emit_test(s1h,s1h);
nottaken1=(int)out;
emit_js(2);
taken=(int)out;
emit_jne(1);
}
} // if(!only32)
//DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
assert(s1l>=0);
if((opcode[i]&0x2f)==4) // BEQ
{
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
nottaken=(int)out;
emit_jne(2);
}
if((opcode[i]&0x2f)==5) // BNE
{
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
nottaken=(int)out;
emit_jeq(2);
}
if((opcode[i]&0x2f)==6) // BLEZ
{
emit_cmpimm(s1l,1);
nottaken=(int)out;
if(only32) emit_jge(2);
else emit_jae(2);
}
if((opcode[i]&0x2f)==7) // BGTZ
{
emit_cmpimm(s1l,1);
nottaken=(int)out;
if(only32) emit_jl(2);
else emit_jb(2);
}
} // if(!unconditional)
int adj;
uint64_t ds_unneeded=branch_regs[i].u;
uint64_t ds_unneeded_upper=branch_regs[i].uu;
ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
ds_unneeded|=1;
ds_unneeded_upper|=1;
// branch taken
if(!nop) {
if(taken) set_jump_target(taken,(int)out);
assem_debug("1:");
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
// load regs
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
ds_assemble(i+1,&branch_regs[i]);
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1) {
emit_loadreg(CCREG,cc=HOST_CCREG);
// CHECK: Is the following instruction (fall thru) allocated ok?
}
assert(cc==HOST_CCREG);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
assem_debug("cycle count (adj)");
if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(branch_internal)
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(branch_internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],branch_internal);
emit_jmp(0);
}
}
// branch not taken
cop1_usable=prev_cop1_usable;
if(!unconditional) {
if(nottaken1) set_jump_target(nottaken1,(int)out);
set_jump_target(nottaken,(int)out);
assem_debug("2:");
if(!likely[i]) {
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
ds_assemble(i+1,&branch_regs[i]);
}
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1&&!likely[i]) {
// Cycle count isn't in a register, temporarily load it then write it out
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
emit_storereg(CCREG,HOST_CCREG);
}
else{
cc=get_reg(i_regmap,CCREG);
assert(cc==HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
}
}
}
}
static void sjump_assemble(int i,struct regstat *i_regs)
{
signed char *i_regmap=i_regs->regmap;
int cc;
int match;
match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
assem_debug("smatch=%d",match);
int s1h,s1l;
int prev_cop1_usable=cop1_usable;
int unconditional=0,nevertaken=0;
int only32=0;
int invert=0;
int branch_internal=internal_branch(branch_regs[i].is32,ba[i]);
if(i==(ba[i]-start)>>2) assem_debug("idle loop");
if(!match) invert=1;
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(i>(ba[i]-start)>>2) invert=1;
#endif
//if(opcode2[i]>=0x10) return; // FIXME (BxxZAL)
assert(opcode2[i]<0x10||rs1[i]==0); // FIXME (BxxZAL)
if(ooo[i]) {
s1l=get_reg(branch_regs[i].regmap,rs1[i]);
s1h=get_reg(branch_regs[i].regmap,rs1[i]|64);
}
else {
s1l=get_reg(i_regmap,rs1[i]);
s1h=get_reg(i_regmap,rs1[i]|64);
}
if(rs1[i]==0)
{
if(opcode2[i]&1) unconditional=1;
else nevertaken=1;
// These are never taken (r0 is never less than zero)
//assert(opcode2[i]!=0);
//assert(opcode2[i]!=2);
//assert(opcode2[i]!=0x10);
//assert(opcode2[i]!=0x12);
}
else {
only32=(regs[i].was32>>rs1[i])&1;
}
if(ooo[i]) {
// Out of order execution (delay slot first)
//DebugMessage(M64MSG_VERBOSE, "OOOE");
address_generation(i+1,i_regs,regs[i].regmap_entry);
ds_assemble(i+1,i_regs);
int adj;
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
bc_unneeded|=1;
bc_unneeded_upper|=1;
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
if(rt1[i]==31) {
int rt,return_address;
assert(rt1[i+1]!=31);
assert(rt2[i+1]!=31);
rt=get_reg(branch_regs[i].regmap,31);
assem_debug("branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(rt>=0) {
// Save the PC even if the branch is not taken
return_address=start+i*4+8;
emit_movimm(return_address,rt); // PC into link register
#ifdef IMM_PREFETCH
if(!nevertaken) emit_prefetch(hash_table[((return_address>>16)^return_address)&0xFFFF]);
#endif
}
}
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
if(unconditional)
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
//do_cc(i,branch_regs[i].regmap,&adj,unconditional?ba[i]:-1,unconditional);
assem_debug("cycle count (adj)");
if(unconditional) {
do_cc(i,branch_regs[i].regmap,&adj,ba[i],TAKEN,0);
if(i!=(ba[i]-start)>>2 || source[i+1]!=0) {
if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(branch_internal)
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(branch_internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],branch_internal);
emit_jmp(0);
}
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(((u_int)out)&7) emit_addnop(0);
#endif
}
}
else if(nevertaken) {
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
}
else {
int nottaken=0;
do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
if(!only32)
{
assert(s1h>=0);
if(opcode2[i]==0) // BLTZ
{
emit_test(s1h,s1h);
if(invert){
nottaken=(int)out;
emit_jns(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
emit_js(0);
}
}
if(opcode2[i]==1) // BGEZ
{
emit_test(s1h,s1h);
if(invert){
nottaken=(int)out;
emit_js(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
emit_jns(0);
}
}
} // if(!only32)
else
{
assert(s1l>=0);
if(opcode2[i]==0) // BLTZ
{
emit_test(s1l,s1l);
if(invert){
nottaken=(int)out;
emit_jns(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
emit_js(0);
}
}
if(opcode2[i]==1) // BGEZ
{
emit_test(s1l,s1l);
if(invert){
nottaken=(int)out;
emit_js(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
emit_jns(0);
}
}
} // if(!only32)
if(invert) {
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(match&&(!branch_internal||!is_ds[(ba[i]-start)>>2])) {
if(adj) {
emit_addimm(cc,-CLOCK_DIVIDER*adj,cc);
add_to_linker((int)out,ba[i],branch_internal);
}else{
emit_addnop(13);
add_to_linker((int)out,ba[i],branch_internal*2);
}
emit_jmp(0);
}else
#endif
{
if(adj) emit_addimm(cc,-(int)CLOCK_DIVIDER*adj,cc);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(branch_internal)
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(branch_internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],branch_internal);
emit_jmp(0);
}
}
set_jump_target(nottaken,(int)out);
}
if(adj) {
if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
}
} // (!unconditional)
} // if(ooo)
else
{
// In-order execution (branch first)
//DebugMessage(M64MSG_VERBOSE, "IOE");
int nottaken=0;
if(!unconditional) {
//DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(!only32)
{
assert(s1h>=0);
if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
{
emit_test(s1h,s1h);
nottaken=(int)out;
emit_jns(1);
}
if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
{
emit_test(s1h,s1h);
nottaken=(int)out;
emit_js(1);
}
} // if(!only32)
else
{
assert(s1l>=0);
if((opcode2[i]&0x1d)==0) // BLTZ/BLTZL
{
emit_test(s1l,s1l);
nottaken=(int)out;
emit_jns(1);
}
if((opcode2[i]&0x1d)==1) // BGEZ/BGEZL
{
emit_test(s1l,s1l);
nottaken=(int)out;
emit_js(1);
}
}
} // if(!unconditional)
int adj;
uint64_t ds_unneeded=branch_regs[i].u;
uint64_t ds_unneeded_upper=branch_regs[i].uu;
ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
ds_unneeded|=1;
ds_unneeded_upper|=1;
// branch taken
if(!nevertaken) {
//assem_debug("1:");
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
// load regs
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
ds_assemble(i+1,&branch_regs[i]);
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1) {
emit_loadreg(CCREG,cc=HOST_CCREG);
// CHECK: Is the following instruction (fall thru) allocated ok?
}
assert(cc==HOST_CCREG);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
assem_debug("cycle count (adj)");
if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(branch_internal)
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(branch_internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],branch_internal);
emit_jmp(0);
}
}
// branch not taken
cop1_usable=prev_cop1_usable;
if(!unconditional) {
set_jump_target(nottaken,(int)out);
assem_debug("1:");
if(!likely[i]) {
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
ds_assemble(i+1,&branch_regs[i]);
}
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1&&!likely[i]) {
// Cycle count isn't in a register, temporarily load it then write it out
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
emit_storereg(CCREG,HOST_CCREG);
}
else{
cc=get_reg(i_regmap,CCREG);
assert(cc==HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
}
}
}
}
static void fjump_assemble(int i,struct regstat *i_regs)
{
signed char *i_regmap=i_regs->regmap;
int cc;
int match;
match=match_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
assem_debug("fmatch=%d",match);
int fs,cs;
int eaddr;
int invert=0;
int branch_internal=internal_branch(branch_regs[i].is32,ba[i]);
if(i==(ba[i]-start)>>2) assem_debug("idle loop");
if(!match) invert=1;
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
if(i>(ba[i]-start)>>2) invert=1;
#endif
if(ooo[i]) {
fs=get_reg(branch_regs[i].regmap,FSREG);
address_generation(i+1,i_regs,regs[i].regmap_entry); // Is this okay?
}
else {
fs=get_reg(i_regmap,FSREG);
}
// Check cop1 unusable
if(!cop1_usable) {
cs=get_reg(i_regmap,CSREG);
assert(cs>=0);
emit_testimm(cs,0x20000000);
eaddr=(int)out;
emit_jeq(0);
add_stub(FP_STUB,eaddr,(int)out,i,cs,(int)i_regs,0,0);
cop1_usable=1;
}
if(ooo[i]) {
// Out of order execution (delay slot first)
//DebugMessage(M64MSG_VERBOSE, "OOOE");
ds_assemble(i+1,i_regs);
int adj;
uint64_t bc_unneeded=branch_regs[i].u;
uint64_t bc_unneeded_upper=branch_regs[i].uu;
bc_unneeded&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
bc_unneeded_upper&=~((1LL<<us1[i])|(1LL<<us2[i]));
bc_unneeded|=1;
bc_unneeded_upper|=1;
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
bc_unneeded,bc_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i],rs1[i]);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
cc=get_reg(branch_regs[i].regmap,CCREG);
assert(cc==HOST_CCREG);
do_cc(i,branch_regs[i].regmap,&adj,-1,0,invert);
assem_debug("cycle count (adj)");
if(1) {
int nottaken=0;
if(adj&&!invert) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
if(1) {
assert(fs>=0);
emit_testimm(fs,0x800000);
if(source[i]&0x10000) // BC1T
{
if(invert){
nottaken=(int)out;
emit_jeq(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
emit_jne(0);
}
}
else // BC1F
if(invert){
nottaken=(int)out;
emit_jne(1);
}else{
add_to_linker((int)out,ba[i],branch_internal);
emit_jeq(0);
}
{
}
} // if(!only32)
if(invert) {
if(adj) emit_addimm(cc,-(int)CLOCK_DIVIDER*adj,cc);
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
else if(match) emit_addnop(13);
#endif
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(branch_internal)
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(branch_internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],branch_internal);
emit_jmp(0);
}
set_jump_target(nottaken,(int)out);
}
if(adj) {
if(!invert) emit_addimm(cc,CLOCK_DIVIDER*adj,cc);
}
} // (!unconditional)
} // if(ooo)
else
{
// In-order execution (branch first)
//DebugMessage(M64MSG_VERBOSE, "IOE");
int nottaken=0;
if(1) {
//DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(1) {
assert(fs>=0);
emit_testimm(fs,0x800000);
if(source[i]&0x10000) // BC1T
{
nottaken=(int)out;
emit_jeq(1);
}
else // BC1F
{
nottaken=(int)out;
emit_jne(1);
}
}
} // if(!unconditional)
int adj;
uint64_t ds_unneeded=branch_regs[i].u;
uint64_t ds_unneeded_upper=branch_regs[i].uu;
ds_unneeded&=~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
ds_unneeded_upper&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~ds_unneeded_upper>>rt1[i+1])&1) ds_unneeded_upper&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
ds_unneeded|=1;
ds_unneeded_upper|=1;
// branch taken
//assem_debug("1:");
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
// load regs
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,INVCP);
ds_assemble(i+1,&branch_regs[i]);
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1) {
emit_loadreg(CCREG,cc=HOST_CCREG);
// CHECK: Is the following instruction (fall thru) allocated ok?
}
assert(cc==HOST_CCREG);
store_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
do_cc(i,i_regmap,&adj,ba[i],TAKEN,0);
assem_debug("cycle count (adj)");
if(adj) emit_addimm(cc,CLOCK_DIVIDER*(ccadj[i]+2-adj),cc);
load_regs_bt(branch_regs[i].regmap,branch_regs[i].is32,branch_regs[i].dirty,ba[i]);
if(branch_internal)
assem_debug("branch: internal");
else
assem_debug("branch: external");
if(branch_internal&&is_ds[(ba[i]-start)>>2]) {
ds_assemble_entry(i);
}
else {
add_to_linker((int)out,ba[i],branch_internal);
emit_jmp(0);
}
// branch not taken
if(1) { // <- FIXME (don't need this)
set_jump_target(nottaken,(int)out);
assem_debug("1:");
if(!likely[i]) {
wb_invalidate(regs[i].regmap,branch_regs[i].regmap,regs[i].dirty,regs[i].is32,
ds_unneeded,ds_unneeded_upper);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,rs1[i+1],rs2[i+1]);
address_generation(i+1,&branch_regs[i],0);
load_regs(regs[i].regmap,branch_regs[i].regmap,regs[i].was32,CCREG,CCREG);
ds_assemble(i+1,&branch_regs[i]);
}
cc=get_reg(branch_regs[i].regmap,CCREG);
if(cc==-1&&!likely[i]) {
// Cycle count isn't in a register, temporarily load it then write it out
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,NOTTAKEN,0);
emit_storereg(CCREG,HOST_CCREG);
}
else{
cc=get_reg(i_regmap,CCREG);
assert(cc==HOST_CCREG);
emit_addimm_and_set_flags(CLOCK_DIVIDER*(ccadj[i]+2),cc);
int jaddr=(int)out;
emit_jns(0);
add_stub(CC_STUB,jaddr,(int)out,0,i,start+i*4+8,likely[i]?NULLDS:NOTTAKEN,0);
}
}
}
}
static void pagespan_assemble(int i,struct regstat *i_regs)
{
int s1l=get_reg(i_regs->regmap,rs1[i]);
int s1h=get_reg(i_regs->regmap,rs1[i]|64);
int s2l=get_reg(i_regs->regmap,rs2[i]);
int s2h=get_reg(i_regs->regmap,rs2[i]|64);
int taken=0;
int nottaken=0;
int unconditional=0;
if(rs1[i]==0)
{
s1l=s2l;s1h=s2h;
s2l=s2h=-1;
}
else if(rs2[i]==0)
{
s2l=s2h=-1;
}
if((i_regs->is32>>rs1[i])&(i_regs->is32>>rs2[i])&1) {
s1h=s2h=-1;
}
int hr=0;
int addr,alt,ntaddr;
if(i_regs->regmap[HOST_BTREG]<0) {addr=HOST_BTREG;}
else {
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG &&
(i_regs->regmap[hr]&63)!=rs1[i] &&
(i_regs->regmap[hr]&63)!=rs2[i] )
{
addr=hr++;break;
}
hr++;
}
}
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
(i_regs->regmap[hr]&63)!=rs1[i] &&
(i_regs->regmap[hr]&63)!=rs2[i] )
{
alt=hr++;break;
}
hr++;
}
if((opcode[i]&0x2E)==6) // BLEZ/BGTZ needs another register
{
while(hr<HOST_REGS)
{
if(hr!=EXCLUDE_REG && hr!=HOST_CCREG && hr!=HOST_BTREG &&
(i_regs->regmap[hr]&63)!=rs1[i] &&
(i_regs->regmap[hr]&63)!=rs2[i] )
{
ntaddr=hr;break;
}
hr++;
}
}
assert(hr<HOST_REGS);
if((opcode[i]&0x2e)==4||opcode[i]==0x11) { // BEQ/BNE/BEQL/BNEL/BC1
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
}
emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i]+2),HOST_CCREG);
if(opcode[i]==2) // J
{
unconditional=1;
}
if(opcode[i]==3) // JAL
{
// TODO: mini_ht
int rt=get_reg(i_regs->regmap,31);
emit_movimm(start+i*4+8,rt);
unconditional=1;
}
if(opcode[i]==0&&(opcode2[i]&0x3E)==8) // JR/JALR
{
emit_mov(s1l,addr);
if(opcode2[i]==9) // JALR
{
int rt=get_reg(i_regs->regmap,rt1[i]);
emit_movimm(start+i*4+8,rt);
}
}
if((opcode[i]&0x3f)==4) // BEQ
{
if(rs1[i]==rs2[i])
{
unconditional=1;
}
else
#ifdef HAVE_CMOV_IMM
if(s1h<0) {
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmov2imm_e_ne_compact(ba[i],start+i*4+8,addr);
}
else
#endif
{
assert(s1l>=0);
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmovne_reg(alt,addr);
}
}
if((opcode[i]&0x3f)==5) // BNE
{
#ifdef HAVE_CMOV_IMM
if(s1h<0) {
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmov2imm_e_ne_compact(start+i*4+8,ba[i],addr);
}
else
#endif
{
assert(s1l>=0);
emit_mov2imm_compact(start+i*4+8,addr,ba[i],alt);
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
emit_cmovne_reg(alt,addr);
}
}
if((opcode[i]&0x3f)==0x14) // BEQL
{
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
nottaken=(int)out;
emit_jne(0);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
if(nottaken) set_jump_target(nottaken,(int)out);
nottaken=(int)out;
emit_jne(0);
}
if((opcode[i]&0x3f)==0x15) // BNEL
{
if(s1h>=0) {
if(s2h>=0) emit_cmp(s1h,s2h);
else emit_test(s1h,s1h);
taken=(int)out;
emit_jne(0);
}
if(s2l>=0) emit_cmp(s1l,s2l);
else emit_test(s1l,s1l);
nottaken=(int)out;
emit_jeq(0);
if(taken) set_jump_target(taken,(int)out);
}
if((opcode[i]&0x3f)==6) // BLEZ
{
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
emit_cmpimm(s1l,1);
if(s1h>=0) emit_mov(addr,ntaddr);
emit_cmovl_reg(alt,addr);
if(s1h>=0) {
emit_test(s1h,s1h);
emit_cmovne_reg(ntaddr,addr);
emit_cmovs_reg(alt,addr);
}
}
if((opcode[i]&0x3f)==7) // BGTZ
{
emit_mov2imm_compact(ba[i],addr,start+i*4+8,ntaddr);
emit_cmpimm(s1l,1);
if(s1h>=0) emit_mov(addr,alt);
emit_cmovl_reg(ntaddr,addr);
if(s1h>=0) {
emit_test(s1h,s1h);
emit_cmovne_reg(alt,addr);
emit_cmovs_reg(ntaddr,addr);
}
}
if((opcode[i]&0x3f)==0x16) // BLEZL
{
assert((opcode[i]&0x3f)!=0x16);
}
if((opcode[i]&0x3f)==0x17) // BGTZL
{
assert((opcode[i]&0x3f)!=0x17);
}
assert(opcode[i]!=1); // BLTZ/BGEZ
//FIXME: Check CSREG
if(opcode[i]==0x11 && opcode2[i]==0x08 ) {
if((source[i]&0x30000)==0) // BC1F
{
emit_mov2imm_compact(ba[i],addr,start+i*4+8,alt);
emit_testimm(s1l,0x800000);
emit_cmovne_reg(alt,addr);
}
if((source[i]&0x30000)==0x10000) // BC1T
{
emit_mov2imm_compact(ba[i],alt,start+i*4+8,addr);
emit_testimm(s1l,0x800000);
emit_cmovne_reg(alt,addr);
}
if((source[i]&0x30000)==0x20000) // BC1FL
{
emit_testimm(s1l,0x800000);
nottaken=(int)out;
emit_jne(0);
}
if((source[i]&0x30000)==0x30000) // BC1TL
{
emit_testimm(s1l,0x800000);
nottaken=(int)out;
emit_jeq(0);
}
}
assert(i_regs->regmap[HOST_CCREG]==CCREG);
wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
if(likely[i]||unconditional)
{
emit_movimm(ba[i],HOST_BTREG);
}
else if(addr!=HOST_BTREG)
{
emit_mov(addr,HOST_BTREG);
}
void *branch_addr=out;
emit_jmp(0);
int target_addr=start+i*4+5;
void *stub=out;
void *compiled_target_addr=check_addr(target_addr);
emit_extjump_ds((int)branch_addr,target_addr);
if(compiled_target_addr) {
set_jump_target((int)branch_addr,(int)compiled_target_addr);
add_link(target_addr,stub);
}
else set_jump_target((int)branch_addr,(int)stub);
if(likely[i]) {
// Not-taken path
set_jump_target((int)nottaken,(int)out);
wb_dirtys(regs[i].regmap,regs[i].is32,regs[i].dirty);
void *branch_addr=out;
emit_jmp(0);
int target_addr=start+i*4+8;
void *stub=out;
void *compiled_target_addr=check_addr(target_addr);
emit_extjump_ds((int)branch_addr,target_addr);
if(compiled_target_addr) {
set_jump_target((int)branch_addr,(int)compiled_target_addr);
add_link(target_addr,stub);
}
else set_jump_target((int)branch_addr,(int)stub);
}
}
// Assemble the delay slot for the above
static void pagespan_ds(void)
{
assem_debug("initial delay slot:");
u_int vaddr=start+1;
u_int page=(0x80000000^vaddr)>>12;
u_int vpage=page;
if(page>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) page=(g_dev.r4300.cp0.tlb.LUT_r[page^0x80000]^0x80000000)>>12;
if(page>2048) page=2048+(page&2047);
if(vpage>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
if(vpage>2048) vpage=2048+(vpage&2047);
ll_add(jump_dirty+vpage,vaddr,(void *)out);
dirty_entry_count++;
do_dirty_stub_ds();
ll_add(jump_in+page,vaddr,(void *)out);
assert(regs[0].regmap_entry[HOST_CCREG]==CCREG);
if(regs[0].regmap[HOST_CCREG]!=CCREG)
wb_register(CCREG,regs[0].regmap_entry,regs[0].wasdirty,regs[0].was32);
if(regs[0].regmap[HOST_BTREG]!=BTREG)
emit_writeword(HOST_BTREG,(int)&branch_target);
load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,rs1[0],rs2[0]);
address_generation(0,&regs[0],regs[0].regmap_entry);
if(itype[0]==LOAD||itype[0]==LOADLR||itype[0]==STORE||itype[0]==STORELR||itype[0]==C1LS)
load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,MMREG,ROREG);
if(itype[0]==STORE||itype[0]==STORELR||(opcode[0]&0x3b)==0x39)
load_regs(regs[0].regmap_entry,regs[0].regmap,regs[0].was32,INVCP,INVCP);
cop1_usable=0;
is_delayslot=0;
switch(itype[0]) {
case ALU:
alu_assemble(0,&regs[0]);break;
case IMM16:
imm16_assemble(0,&regs[0]);break;
case SHIFT:
shift_assemble(0,&regs[0]);break;
case SHIFTIMM:
shiftimm_assemble(0,&regs[0]);break;
case LOAD:
load_assemble(0,&regs[0]);break;
case LOADLR:
loadlr_assemble(0,&regs[0]);break;
case STORE:
store_assemble(0,&regs[0]);break;
case STORELR:
storelr_assemble(0,&regs[0]);break;
case COP0:
cop0_assemble(0,&regs[0]);break;
case COP1:
cop1_assemble(0,&regs[0]);break;
case C1LS:
c1ls_assemble(0,&regs[0]);break;
case FCONV:
fconv_assemble(0,&regs[0]);break;
case FLOAT:
float_assemble(0,&regs[0]);break;
case FCOMP:
fcomp_assemble(0,&regs[0]);break;
case MULTDIV:
multdiv_assemble(0,&regs[0]);break;
case MOV:
mov_assemble(0,&regs[0]);break;
case SYSCALL:
case SPAN:
case UJUMP:
case RJUMP:
case CJUMP:
case SJUMP:
case FJUMP:
DebugMessage(M64MSG_VERBOSE, "Jump in the delay slot. This is probably a bug.");
}
int btaddr=get_reg(regs[0].regmap,BTREG);
if(btaddr<0) {
btaddr=get_reg(regs[0].regmap,-1);
emit_readword((int)&branch_target,btaddr);
}
assert(btaddr!=HOST_CCREG);
if(regs[0].regmap[HOST_CCREG]!=CCREG) emit_loadreg(CCREG,HOST_CCREG);
#ifdef HOST_IMM8
emit_movimm(start+4,HOST_TEMPREG);
emit_cmp(btaddr,HOST_TEMPREG);
#else
emit_cmpimm(btaddr,start+4);
#endif
int branch=(int)out;
emit_jeq(0);
store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,-1);
emit_jmp(jump_vaddr_reg[btaddr]);
set_jump_target(branch,(int)out);
store_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
load_regs_bt(regs[0].regmap,regs[0].is32,regs[0].dirty,start+4);
}
/* disassembly */
static void disassemble_inst(int i)
{
if (bt[i]) DebugMessage(M64MSG_VERBOSE, "*"); else DebugMessage(M64MSG_VERBOSE, " ");
switch(itype[i]) {
case UJUMP:
printf (" %x: %s %8x",start+i*4,insn[i],ba[i]);break;
case CJUMP:
printf (" %x: %s r%d,r%d,%8x",start+i*4,insn[i],rs1[i],rs2[i],i?start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14):*ba);break;
case SJUMP:
printf (" %x: %s r%d,%8x",start+i*4,insn[i],rs1[i],start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14));break;
case FJUMP:
printf (" %x: %s %8x",start+i*4,insn[i],ba[i]);break;
case RJUMP:
if ((opcode2[i]&1)&&rt1[i]!=31)
printf (" %x: %s r%d,r%d",start+i*4,insn[i],rt1[i],rs1[i]);
else
printf (" %x: %s r%d",start+i*4,insn[i],rs1[i]);
break;
case SPAN:
printf (" %x: %s (pagespan) r%d,r%d,%8x",start+i*4,insn[i],rs1[i],rs2[i],ba[i]);break;
case IMM16:
if(opcode[i]==0xf) //LUI
printf (" %x: %s r%d,%4x0000",start+i*4,insn[i],rt1[i],imm[i]&0xffff);
else
printf (" %x: %s r%d,r%d,%d",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
break;
case LOAD:
case LOADLR:
printf (" %x: %s r%d,r%d+%x",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
break;
case STORE:
case STORELR:
printf (" %x: %s r%d,r%d+%x",start+i*4,insn[i],rs2[i],rs1[i],imm[i]);
break;
case ALU:
case SHIFT:
printf (" %x: %s r%d,r%d,r%d",start+i*4,insn[i],rt1[i],rs1[i],rs2[i]);
break;
case MULTDIV:
printf (" %x: %s r%d,r%d",start+i*4,insn[i],rs1[i],rs2[i]);
break;
case SHIFTIMM:
printf (" %x: %s r%d,r%d,%d",start+i*4,insn[i],rt1[i],rs1[i],imm[i]);
break;
case MOV:
if((opcode2[i]&0x1d)==0x10)
printf (" %x: %s r%d",start+i*4,insn[i],rt1[i]);
else if((opcode2[i]&0x1d)==0x11)
printf (" %x: %s r%d",start+i*4,insn[i],rs1[i]);
else
printf (" %x: %s",start+i*4,insn[i]);
break;
case COP0:
if(opcode2[i]==0)
printf (" %x: %s r%d,cpr0[%d]",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC0
else if(opcode2[i]==4)
printf (" %x: %s r%d,cpr0[%d]",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC0
else printf (" %x: %s",start+i*4,insn[i]);
break;
case COP1:
if(opcode2[i]<3)
printf (" %x: %s r%d,cpr1[%d]",start+i*4,insn[i],rt1[i],(source[i]>>11)&0x1f); // MFC1
else if(opcode2[i]>3)
printf (" %x: %s r%d,cpr1[%d]",start+i*4,insn[i],rs1[i],(source[i]>>11)&0x1f); // MTC1
else printf (" %x: %s",start+i*4,insn[i]);
break;
case C1LS:
printf (" %x: %s cpr1[%d],r%d+%x",start+i*4,insn[i],(source[i]>>16)&0x1f,rs1[i],imm[i]);
break;
default:
//printf (" %s %8x",insn[i],source[i]);
printf (" %x: %s",start+i*4,insn[i]);
}
}
void new_dynarec_init(void)
{
DebugMessage(M64MSG_INFO, "Init new dynarec");
#if NEW_DYNAREC == NEW_DYNAREC_ARM
if ((base_addr = mmap ((u_char *)BASE_ADDR, 1<<TARGET_SIZE_2,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0)) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
#else
#if defined(WIN32)
base_addr = VirtualAlloc(NULL, 1<<TARGET_SIZE_2, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
#else
if ((base_addr = mmap (NULL, 1<<TARGET_SIZE_2,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0)) <= 0) {DebugMessage(M64MSG_ERROR, "mmap() failed");}
#endif
#endif
out=(u_char *)base_addr;
g_dev.mem.rdword=&readmem_dword;
fake_pc.f.r.rs=(long long int *)&readmem_dword;
fake_pc.f.r.rt=(long long int *)&readmem_dword;
fake_pc.f.r.rd=(long long int *)&readmem_dword;
int n;
for(n=0x80000;n<0x80800;n++)
g_dev.r4300.cached_interp.invalid_code[n]=1;
for(n=0;n<65536;n++)
hash_table[n][0]=hash_table[n][2]=-1;
memset(mini_ht,-1,sizeof(mini_ht));
memset(restore_candidate,0,sizeof(restore_candidate));
copy_size=0;
expirep=16384; // Expiry pointer, +2 blocks
pending_exception=0;
literalcount=0;
#ifdef HOST_IMM8
// Copy this into local area so we don't have to put it in every literal pool
invc_ptr=g_dev.r4300.cached_interp.invalid_code;
#endif
// TLB
using_tlb=0;
for(n=0;n<524288;n++) // 0 .. 0x7FFFFFFF
memory_map[n]=-1;
for(n=524288;n<526336;n++) // 0x80000000 .. 0x807FFFFF
memory_map[n]=((u_int)g_dev.ri.rdram.dram-0x80000000)>>2;
for(n=526336;n<1048576;n++) // 0x80800000 .. 0xFFFFFFFF
memory_map[n]=-1;
for(n=0;n<0x8000;n++) { // 0 .. 0x7FFFFFFF
g_dev.mem.writemem[n] = write_nomem_new;
g_dev.mem.writememb[n] = write_nomemb_new;
g_dev.mem.writememh[n] = write_nomemh_new;
g_dev.mem.writememd[n] = write_nomemd_new;
g_dev.mem.readmem[n] = read_nomem_new;
g_dev.mem.readmemb[n] = read_nomemb_new;
g_dev.mem.readmemh[n] = read_nomemh_new;
g_dev.mem.readmemd[n] = read_nomemd_new;
}
for(n=0x8000;n<0x8080;n++) { // 0x80000000 .. 0x807FFFFF
g_dev.mem.writemem[n] = write_rdram_new;
g_dev.mem.writememb[n] = write_rdramb_new;
g_dev.mem.writememh[n] = write_rdramh_new;
g_dev.mem.writememd[n] = write_rdramd_new;
}
for(n=0xC000;n<0x10000;n++) { // 0xC0000000 .. 0xFFFFFFFF
g_dev.mem.writemem[n] = write_nomem_new;
g_dev.mem.writememb[n] = write_nomemb_new;
g_dev.mem.writememh[n] = write_nomemh_new;
g_dev.mem.writememd[n] = write_nomemd_new;
g_dev.mem.readmem[n] = read_nomem_new;
g_dev.mem.readmemb[n] = read_nomemb_new;
g_dev.mem.readmemh[n] = read_nomemh_new;
g_dev.mem.readmemd[n] = read_nomemd_new;
}
g_dev.mem.writemem[0x8430] = write_mi_new;
g_dev.mem.writememb[0x8430] = write_mib_new;
g_dev.mem.writememh[0x8430] = write_mih_new;
g_dev.mem.writememd[0x8430] = write_mid_new;
g_dev.mem.writemem[0xa430] = write_mi_new;
g_dev.mem.writememb[0xa430] = write_mib_new;
g_dev.mem.writememh[0xa430] = write_mih_new;
g_dev.mem.writememd[0xa430] = write_mid_new;
tlb_hacks();
arch_init();
}
void new_dynarec_cleanup(void)
{
int n;
for(n=0;n<4096;n++) ll_clear(jump_in+n);
for(n=0;n<4096;n++) ll_clear(jump_out+n);
for(n=0;n<4096;n++) ll_clear(jump_dirty+n);
assert(copy_size==0);
#if defined(WIN32)
VirtualFree(base_addr, 0, MEM_RELEASE);
#else
if (munmap (base_addr, 1<<TARGET_SIZE_2) < 0) {DebugMessage(M64MSG_ERROR, "munmap() failed");}
#endif
#ifdef ROM_COPY
if (munmap (ROM_COPY, 67108864) < 0) {DebugMessage(M64MSG_ERROR, "munmap() failed");}
#endif
}
int new_recompile_block(int addr)
{
assem_debug("NOTCOMPILED: addr = %x -> %x", (int)addr, (int)out);
#if COUNT_NOTCOMPILEDS
notcompiledCount++;
DebugMessage(M64MSG_VERBOSE, "notcompiledCount=%i", notcompiledCount );
#endif
start = (u_int)addr&~3;
//assert(((u_int)addr&1)==0);
if ((int)addr >= 0xa4000000 && (int)addr < 0xa4001000) {
source = (u_int *)((u_int)g_dev.sp.mem+start-0xa4000000);
pagelimit = 0xa4001000;
}
else if ((int)addr >= 0x80000000 && (int)addr < 0x80800000) {
source = (u_int *)((u_int)g_dev.ri.rdram.dram+start-0x80000000);
pagelimit = 0x80800000;
}
else if ((signed int)addr >= (signed int)0xC0000000) {
//DebugMessage(M64MSG_VERBOSE, "addr=%x mm=%x",(u_int)addr,(memory_map[start>>12]<<2));
//if(g_dev.r4300.cp0.tlb.LUT_r[start>>12])
//source = (u_int *)(((int)g_dev.ri.rdram.dram)+(g_dev.r4300.cp0.tlb.LUT_r[start>>12]&0xFFFFF000)+(((int)addr)&0xFFF)-0x80000000);
if((signed int)memory_map[start>>12]>=0) {
source = (u_int *)((u_int)(start+(memory_map[start>>12]<<2)));
pagelimit=(start+4096)&0xFFFFF000;
int map=memory_map[start>>12];
int i;
for(i=0;i<5;i++) {
//DebugMessage(M64MSG_VERBOSE, "start: %x next: %x",map,memory_map[pagelimit>>12]);
if((map&0xBFFFFFFF)==(memory_map[pagelimit>>12]&0xBFFFFFFF)) pagelimit+=4096;
}
assem_debug("pagelimit=%x",pagelimit);
assem_debug("mapping=%x (%x)",memory_map[start>>12],(memory_map[start>>12]<<2)+start);
}
else {
assem_debug("Compile at unmapped memory address: %x ", (int)addr);
//assem_debug("start: %x next: %x",memory_map[start>>12],memory_map[(start+4096)>>12]);
return 1; // Caller will invoke exception handler
}
//DebugMessage(M64MSG_VERBOSE, "source= %x",(int)source);
}
else {
//DebugMessage(M64MSG_VERBOSE, "Compile at bogus memory address: %x ", (int)addr);
DebugMessage(M64MSG_ERROR, "Compile at bogus memory address: %x", (int)addr);
exit(1);
}
/* Pass 1: disassemble */
/* Pass 2: register dependencies, branch targets */
/* Pass 3: register allocation */
/* Pass 4: branch dependencies */
/* Pass 5: pre-alloc */
/* Pass 6: optimize clean/dirty state */
/* Pass 7: flag 32-bit registers */
/* Pass 8: assembly */
/* Pass 9: linker */
/* Pass 10: garbage collection / free memory */
int i,j;
int done=0;
unsigned int type,op,op2;
//DebugMessage(M64MSG_VERBOSE, "addr = %x source = %x %x", addr,source,source[0]);
/* Pass 1 disassembly */
for(i=0;!done;i++) {
bt[i]=0;likely[i]=0;ooo[i]=0;op2=0;
minimum_free_regs[i]=0;
opcode[i]=op=source[i]>>26;
switch(op)
{
case 0x00: strcpy(insn[i],"special"); type=NI;
op2=source[i]&0x3f;
switch(op2)
{
case 0x00: strcpy(insn[i],"SLL"); type=SHIFTIMM; break;
case 0x02: strcpy(insn[i],"SRL"); type=SHIFTIMM; break;
case 0x03: strcpy(insn[i],"SRA"); type=SHIFTIMM; break;
case 0x04: strcpy(insn[i],"SLLV"); type=SHIFT; break;
case 0x06: strcpy(insn[i],"SRLV"); type=SHIFT; break;
case 0x07: strcpy(insn[i],"SRAV"); type=SHIFT; break;
case 0x08: strcpy(insn[i],"JR"); type=RJUMP; break;
case 0x09: strcpy(insn[i],"JALR"); type=RJUMP; break;
case 0x0C: strcpy(insn[i],"SYSCALL"); type=SYSCALL; break;
case 0x0D: strcpy(insn[i],"BREAK"); type=OTHER; break;
case 0x0F: strcpy(insn[i],"SYNC"); type=OTHER; break;
case 0x10: strcpy(insn[i],"MFHI"); type=MOV; break;
case 0x11: strcpy(insn[i],"MTHI"); type=MOV; break;
case 0x12: strcpy(insn[i],"MFLO"); type=MOV; break;
case 0x13: strcpy(insn[i],"MTLO"); type=MOV; break;
case 0x14: strcpy(insn[i],"DSLLV"); type=SHIFT; break;
case 0x16: strcpy(insn[i],"DSRLV"); type=SHIFT; break;
case 0x17: strcpy(insn[i],"DSRAV"); type=SHIFT; break;
case 0x18: strcpy(insn[i],"MULT"); type=MULTDIV; break;
case 0x19: strcpy(insn[i],"MULTU"); type=MULTDIV; break;
case 0x1A: strcpy(insn[i],"DIV"); type=MULTDIV; break;
case 0x1B: strcpy(insn[i],"DIVU"); type=MULTDIV; break;
case 0x1C: strcpy(insn[i],"DMULT"); type=MULTDIV; break;
case 0x1D: strcpy(insn[i],"DMULTU"); type=MULTDIV; break;
case 0x1E: strcpy(insn[i],"DDIV"); type=MULTDIV; break;
case 0x1F: strcpy(insn[i],"DDIVU"); type=MULTDIV; break;
case 0x20: strcpy(insn[i],"ADD"); type=ALU; break;
case 0x21: strcpy(insn[i],"ADDU"); type=ALU; break;
case 0x22: strcpy(insn[i],"SUB"); type=ALU; break;
case 0x23: strcpy(insn[i],"SUBU"); type=ALU; break;
case 0x24: strcpy(insn[i],"AND"); type=ALU; break;
case 0x25: strcpy(insn[i],"OR"); type=ALU; break;
case 0x26: strcpy(insn[i],"XOR"); type=ALU; break;
case 0x27: strcpy(insn[i],"NOR"); type=ALU; break;
case 0x2A: strcpy(insn[i],"SLT"); type=ALU; break;
case 0x2B: strcpy(insn[i],"SLTU"); type=ALU; break;
case 0x2C: strcpy(insn[i],"DADD"); type=ALU; break;
case 0x2D: strcpy(insn[i],"DADDU"); type=ALU; break;
case 0x2E: strcpy(insn[i],"DSUB"); type=ALU; break;
case 0x2F: strcpy(insn[i],"DSUBU"); type=ALU; break;
case 0x30: strcpy(insn[i],"TGE"); type=NI; break;
case 0x31: strcpy(insn[i],"TGEU"); type=NI; break;
case 0x32: strcpy(insn[i],"TLT"); type=NI; break;
case 0x33: strcpy(insn[i],"TLTU"); type=NI; break;
case 0x34: strcpy(insn[i],"TEQ"); type=NI; break;
case 0x36: strcpy(insn[i],"TNE"); type=NI; break;
case 0x38: strcpy(insn[i],"DSLL"); type=SHIFTIMM; break;
case 0x3A: strcpy(insn[i],"DSRL"); type=SHIFTIMM; break;
case 0x3B: strcpy(insn[i],"DSRA"); type=SHIFTIMM; break;
case 0x3C: strcpy(insn[i],"DSLL32"); type=SHIFTIMM; break;
case 0x3E: strcpy(insn[i],"DSRL32"); type=SHIFTIMM; break;
case 0x3F: strcpy(insn[i],"DSRA32"); type=SHIFTIMM; break;
}
break;
case 0x01: strcpy(insn[i],"regimm"); type=NI;
op2=(source[i]>>16)&0x1f;
switch(op2)
{
case 0x00: strcpy(insn[i],"BLTZ"); type=SJUMP; break;
case 0x01: strcpy(insn[i],"BGEZ"); type=SJUMP; break;
case 0x02: strcpy(insn[i],"BLTZL"); type=SJUMP; break;
case 0x03: strcpy(insn[i],"BGEZL"); type=SJUMP; break;
case 0x08: strcpy(insn[i],"TGEI"); type=NI; break;
case 0x09: strcpy(insn[i],"TGEIU"); type=NI; break;
case 0x0A: strcpy(insn[i],"TLTI"); type=NI; break;
case 0x0B: strcpy(insn[i],"TLTIU"); type=NI; break;
case 0x0C: strcpy(insn[i],"TEQI"); type=NI; break;
case 0x0E: strcpy(insn[i],"TNEI"); type=NI; break;
case 0x10: strcpy(insn[i],"BLTZAL"); type=SJUMP; break;
case 0x11: strcpy(insn[i],"BGEZAL"); type=SJUMP; break;
case 0x12: strcpy(insn[i],"BLTZALL"); type=SJUMP; break;
case 0x13: strcpy(insn[i],"BGEZALL"); type=SJUMP; break;
}
break;
case 0x02: strcpy(insn[i],"J"); type=UJUMP; break;
case 0x03: strcpy(insn[i],"JAL"); type=UJUMP; break;
case 0x04: strcpy(insn[i],"BEQ"); type=CJUMP; break;
case 0x05: strcpy(insn[i],"BNE"); type=CJUMP; break;
case 0x06: strcpy(insn[i],"BLEZ"); type=CJUMP; break;
case 0x07: strcpy(insn[i],"BGTZ"); type=CJUMP; break;
case 0x08: strcpy(insn[i],"ADDI"); type=IMM16; break;
case 0x09: strcpy(insn[i],"ADDIU"); type=IMM16; break;
case 0x0A: strcpy(insn[i],"SLTI"); type=IMM16; break;
case 0x0B: strcpy(insn[i],"SLTIU"); type=IMM16; break;
case 0x0C: strcpy(insn[i],"ANDI"); type=IMM16; break;
case 0x0D: strcpy(insn[i],"ORI"); type=IMM16; break;
case 0x0E: strcpy(insn[i],"XORI"); type=IMM16; break;
case 0x0F: strcpy(insn[i],"LUI"); type=IMM16; break;
case 0x10: strcpy(insn[i],"cop0"); type=NI;
op2=(source[i]>>21)&0x1f;
switch(op2)
{
case 0x00: strcpy(insn[i],"MFC0"); type=COP0; break;
case 0x04: strcpy(insn[i],"MTC0"); type=COP0; break;
case 0x10: strcpy(insn[i],"tlb"); type=NI;
switch(source[i]&0x3f)
{
case 0x01: strcpy(insn[i],"TLBR"); type=COP0; break;
case 0x02: strcpy(insn[i],"TLBWI"); type=COP0; break;
case 0x06: strcpy(insn[i],"TLBWR"); type=COP0; break;
case 0x08: strcpy(insn[i],"TLBP"); type=COP0; break;
case 0x18: strcpy(insn[i],"ERET"); type=COP0; break;
}
}
break;
case 0x11: strcpy(insn[i],"cop1"); type=NI;
op2=(source[i]>>21)&0x1f;
switch(op2)
{
case 0x00: strcpy(insn[i],"MFC1"); type=COP1; break;
case 0x01: strcpy(insn[i],"DMFC1"); type=COP1; break;
case 0x02: strcpy(insn[i],"CFC1"); type=COP1; break;
case 0x04: strcpy(insn[i],"MTC1"); type=COP1; break;
case 0x05: strcpy(insn[i],"DMTC1"); type=COP1; break;
case 0x06: strcpy(insn[i],"CTC1"); type=COP1; break;
case 0x08: strcpy(insn[i],"BC1"); type=FJUMP;
switch((source[i]>>16)&0x3)
{
case 0x00: strcpy(insn[i],"BC1F"); break;
case 0x01: strcpy(insn[i],"BC1T"); break;
case 0x02: strcpy(insn[i],"BC1FL"); break;
case 0x03: strcpy(insn[i],"BC1TL"); break;
}
break;
case 0x10: strcpy(insn[i],"C1.S"); type=NI;
switch(source[i]&0x3f)
{
case 0x00: strcpy(insn[i],"ADD.S"); type=FLOAT; break;
case 0x01: strcpy(insn[i],"SUB.S"); type=FLOAT; break;
case 0x02: strcpy(insn[i],"MUL.S"); type=FLOAT; break;
case 0x03: strcpy(insn[i],"DIV.S"); type=FLOAT; break;
case 0x04: strcpy(insn[i],"SQRT.S"); type=FLOAT; break;
case 0x05: strcpy(insn[i],"ABS.S"); type=FLOAT; break;
case 0x06: strcpy(insn[i],"MOV.S"); type=FLOAT; break;
case 0x07: strcpy(insn[i],"NEG.S"); type=FLOAT; break;
case 0x08: strcpy(insn[i],"ROUND.L.S"); type=FCONV; break;
case 0x09: strcpy(insn[i],"TRUNC.L.S"); type=FCONV; break;
case 0x0A: strcpy(insn[i],"CEIL.L.S"); type=FCONV; break;
case 0x0B: strcpy(insn[i],"FLOOR.L.S"); type=FCONV; break;
case 0x0C: strcpy(insn[i],"ROUND.W.S"); type=FCONV; break;
case 0x0D: strcpy(insn[i],"TRUNC.W.S"); type=FCONV; break;
case 0x0E: strcpy(insn[i],"CEIL.W.S"); type=FCONV; break;
case 0x0F: strcpy(insn[i],"FLOOR.W.S"); type=FCONV; break;
case 0x21: strcpy(insn[i],"CVT.D.S"); type=FCONV; break;
case 0x24: strcpy(insn[i],"CVT.W.S"); type=FCONV; break;
case 0x25: strcpy(insn[i],"CVT.L.S"); type=FCONV; break;
case 0x30: strcpy(insn[i],"C.F.S"); type=FCOMP; break;
case 0x31: strcpy(insn[i],"C.UN.S"); type=FCOMP; break;
case 0x32: strcpy(insn[i],"C.EQ.S"); type=FCOMP; break;
case 0x33: strcpy(insn[i],"C.UEQ.S"); type=FCOMP; break;
case 0x34: strcpy(insn[i],"C.OLT.S"); type=FCOMP; break;
case 0x35: strcpy(insn[i],"C.ULT.S"); type=FCOMP; break;
case 0x36: strcpy(insn[i],"C.OLE.S"); type=FCOMP; break;
case 0x37: strcpy(insn[i],"C.ULE.S"); type=FCOMP; break;
case 0x38: strcpy(insn[i],"C.SF.S"); type=FCOMP; break;
case 0x39: strcpy(insn[i],"C.NGLE.S"); type=FCOMP; break;
case 0x3A: strcpy(insn[i],"C.SEQ.S"); type=FCOMP; break;
case 0x3B: strcpy(insn[i],"C.NGL.S"); type=FCOMP; break;
case 0x3C: strcpy(insn[i],"C.LT.S"); type=FCOMP; break;
case 0x3D: strcpy(insn[i],"C.NGE.S"); type=FCOMP; break;
case 0x3E: strcpy(insn[i],"C.LE.S"); type=FCOMP; break;
case 0x3F: strcpy(insn[i],"C.NGT.S"); type=FCOMP; break;
}
break;
case 0x11: strcpy(insn[i],"C1.D"); type=NI;
switch(source[i]&0x3f)
{
case 0x00: strcpy(insn[i],"ADD.D"); type=FLOAT; break;
case 0x01: strcpy(insn[i],"SUB.D"); type=FLOAT; break;
case 0x02: strcpy(insn[i],"MUL.D"); type=FLOAT; break;
case 0x03: strcpy(insn[i],"DIV.D"); type=FLOAT; break;
case 0x04: strcpy(insn[i],"SQRT.D"); type=FLOAT; break;
case 0x05: strcpy(insn[i],"ABS.D"); type=FLOAT; break;
case 0x06: strcpy(insn[i],"MOV.D"); type=FLOAT; break;
case 0x07: strcpy(insn[i],"NEG.D"); type=FLOAT; break;
case 0x08: strcpy(insn[i],"ROUND.L.D"); type=FCONV; break;
case 0x09: strcpy(insn[i],"TRUNC.L.D"); type=FCONV; break;
case 0x0A: strcpy(insn[i],"CEIL.L.D"); type=FCONV; break;
case 0x0B: strcpy(insn[i],"FLOOR.L.D"); type=FCONV; break;
case 0x0C: strcpy(insn[i],"ROUND.W.D"); type=FCONV; break;
case 0x0D: strcpy(insn[i],"TRUNC.W.D"); type=FCONV; break;
case 0x0E: strcpy(insn[i],"CEIL.W.D"); type=FCONV; break;
case 0x0F: strcpy(insn[i],"FLOOR.W.D"); type=FCONV; break;
case 0x20: strcpy(insn[i],"CVT.S.D"); type=FCONV; break;
case 0x24: strcpy(insn[i],"CVT.W.D"); type=FCONV; break;
case 0x25: strcpy(insn[i],"CVT.L.D"); type=FCONV; break;
case 0x30: strcpy(insn[i],"C.F.D"); type=FCOMP; break;
case 0x31: strcpy(insn[i],"C.UN.D"); type=FCOMP; break;
case 0x32: strcpy(insn[i],"C.EQ.D"); type=FCOMP; break;
case 0x33: strcpy(insn[i],"C.UEQ.D"); type=FCOMP; break;
case 0x34: strcpy(insn[i],"C.OLT.D"); type=FCOMP; break;
case 0x35: strcpy(insn[i],"C.ULT.D"); type=FCOMP; break;
case 0x36: strcpy(insn[i],"C.OLE.D"); type=FCOMP; break;
case 0x37: strcpy(insn[i],"C.ULE.D"); type=FCOMP; break;
case 0x38: strcpy(insn[i],"C.SF.D"); type=FCOMP; break;
case 0x39: strcpy(insn[i],"C.NGLE.D"); type=FCOMP; break;
case 0x3A: strcpy(insn[i],"C.SEQ.D"); type=FCOMP; break;
case 0x3B: strcpy(insn[i],"C.NGL.D"); type=FCOMP; break;
case 0x3C: strcpy(insn[i],"C.LT.D"); type=FCOMP; break;
case 0x3D: strcpy(insn[i],"C.NGE.D"); type=FCOMP; break;
case 0x3E: strcpy(insn[i],"C.LE.D"); type=FCOMP; break;
case 0x3F: strcpy(insn[i],"C.NGT.D"); type=FCOMP; break;
}
break;
case 0x14: strcpy(insn[i],"C1.W"); type=NI;
switch(source[i]&0x3f)
{
case 0x20: strcpy(insn[i],"CVT.S.W"); type=FCONV; break;
case 0x21: strcpy(insn[i],"CVT.D.W"); type=FCONV; break;
}
break;
case 0x15: strcpy(insn[i],"C1.L"); type=NI;
switch(source[i]&0x3f)
{
case 0x20: strcpy(insn[i],"CVT.S.L"); type=FCONV; break;
case 0x21: strcpy(insn[i],"CVT.D.L"); type=FCONV; break;
}
break;
}
break;
case 0x14: strcpy(insn[i],"BEQL"); type=CJUMP; break;
case 0x15: strcpy(insn[i],"BNEL"); type=CJUMP; break;
case 0x16: strcpy(insn[i],"BLEZL"); type=CJUMP; break;
case 0x17: strcpy(insn[i],"BGTZL"); type=CJUMP; break;
case 0x18: strcpy(insn[i],"DADDI"); type=IMM16; break;
case 0x19: strcpy(insn[i],"DADDIU"); type=IMM16; break;
case 0x1A: strcpy(insn[i],"LDL"); type=LOADLR; break;
case 0x1B: strcpy(insn[i],"LDR"); type=LOADLR; break;
case 0x20: strcpy(insn[i],"LB"); type=LOAD; break;
case 0x21: strcpy(insn[i],"LH"); type=LOAD; break;
case 0x22: strcpy(insn[i],"LWL"); type=LOADLR; break;
case 0x23: strcpy(insn[i],"LW"); type=LOAD; break;
case 0x24: strcpy(insn[i],"LBU"); type=LOAD; break;
case 0x25: strcpy(insn[i],"LHU"); type=LOAD; break;
case 0x26: strcpy(insn[i],"LWR"); type=LOADLR; break;
case 0x27: strcpy(insn[i],"LWU"); type=LOAD; break;
case 0x28: strcpy(insn[i],"SB"); type=STORE; break;
case 0x29: strcpy(insn[i],"SH"); type=STORE; break;
case 0x2A: strcpy(insn[i],"SWL"); type=STORELR; break;
case 0x2B: strcpy(insn[i],"SW"); type=STORE; break;
case 0x2C: strcpy(insn[i],"SDL"); type=STORELR; break;
case 0x2D: strcpy(insn[i],"SDR"); type=STORELR; break;
case 0x2E: strcpy(insn[i],"SWR"); type=STORELR; break;
case 0x2F: strcpy(insn[i],"CACHE"); type=NOP; break;
case 0x30: strcpy(insn[i],"LL"); type=NI; break;
case 0x31: strcpy(insn[i],"LWC1"); type=C1LS; break;
case 0x34: strcpy(insn[i],"LLD"); type=NI; break;
case 0x35: strcpy(insn[i],"LDC1"); type=C1LS; break;
case 0x37: strcpy(insn[i],"LD"); type=LOAD; break;
case 0x38: strcpy(insn[i],"SC"); type=NI; break;
case 0x39: strcpy(insn[i],"SWC1"); type=C1LS; break;
case 0x3C: strcpy(insn[i],"SCD"); type=NI; break;
case 0x3D: strcpy(insn[i],"SDC1"); type=C1LS; break;
case 0x3F: strcpy(insn[i],"SD"); type=STORE; break;
default: strcpy(insn[i],"???"); type=NI; break;
}
itype[i]=type;
opcode2[i]=op2;
/* Get registers/immediates */
lt1[i]=0;
us1[i]=0;
us2[i]=0;
dep1[i]=0;
dep2[i]=0;
switch(type) {
case LOAD:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=0;
rt1[i]=(source[i]>>16)&0x1f;
rt2[i]=0;
imm[i]=(short)source[i];
break;
case STORE:
case STORELR:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=(source[i]>>16)&0x1f;
rt1[i]=0;
rt2[i]=0;
imm[i]=(short)source[i];
if(op==0x2c||op==0x2d||op==0x3f) us1[i]=rs2[i]; // 64-bit SDL/SDR/SD
break;
case LOADLR:
// LWL/LWR only load part of the register,
// therefore the target register must be treated as a source too
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=(source[i]>>16)&0x1f;
rt1[i]=(source[i]>>16)&0x1f;
rt2[i]=0;
imm[i]=(short)source[i];
if(op==0x1a||op==0x1b) us1[i]=rs2[i]; // LDR/LDL
if(op==0x26) dep1[i]=rt1[i]; // LWR
break;
case IMM16:
if (op==0x0f) rs1[i]=0; // LUI instruction has no source register
else rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=0;
rt1[i]=(source[i]>>16)&0x1f;
rt2[i]=0;
if(op>=0x0c&&op<=0x0e) { // ANDI/ORI/XORI
imm[i]=(unsigned short)source[i];
}else{
imm[i]=(short)source[i];
}
if(op==0x18||op==0x19) us1[i]=rs1[i]; // DADDI/DADDIU
if(op==0x0a||op==0x0b) us1[i]=rs1[i]; // SLTI/SLTIU
if(op==0x0d||op==0x0e) dep1[i]=rs1[i]; // ORI/XORI
break;
case UJUMP:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
// The JAL instruction writes to r31.
if (op&1) {
rt1[i]=31;
}
rs2[i]=CCREG;
break;
case RJUMP:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
// The JALR instruction writes to rd.
if (op2&1) {
rt1[i]=(source[i]>>11)&0x1f;
}
rs2[i]=CCREG;
break;
case CJUMP:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=(source[i]>>16)&0x1f;
rt1[i]=0;
rt2[i]=0;
if(op&2) { // BGTZ/BLEZ
rs2[i]=0;
}
us1[i]=rs1[i];
us2[i]=rs2[i];
likely[i]=op>>4;
break;
case SJUMP:
rs1[i]=(source[i]>>21)&0x1f;
rs2[i]=CCREG;
rt1[i]=0;
rt2[i]=0;
us1[i]=rs1[i];
if(op2&0x10) { // BxxAL
rt1[i]=31;
// NOTE: If the branch is not taken, r31 is still overwritten
}
likely[i]=(op2&2)>>1;
break;
case FJUMP:
rs1[i]=FSREG;
rs2[i]=CSREG;
rt1[i]=0;
rt2[i]=0;
likely[i]=((source[i])>>17)&1;
break;
case ALU:
rs1[i]=(source[i]>>21)&0x1f; // source
rs2[i]=(source[i]>>16)&0x1f; // subtract amount
rt1[i]=(source[i]>>11)&0x1f; // destination
rt2[i]=0;
if(op2==0x2a||op2==0x2b) { // SLT/SLTU
us1[i]=rs1[i];us2[i]=rs2[i];
}
else if(op2>=0x24&&op2<=0x27) { // AND/OR/XOR/NOR
dep1[i]=rs1[i];dep2[i]=rs2[i];
}
else if(op2>=0x2c&&op2<=0x2f) { // DADD/DSUB
dep1[i]=rs1[i];dep2[i]=rs2[i];
}
break;
case MULTDIV:
rs1[i]=(source[i]>>21)&0x1f; // source
rs2[i]=(source[i]>>16)&0x1f; // divisor
rt1[i]=HIREG;
rt2[i]=LOREG;
if (op2>=0x1c&&op2<=0x1f) { // DMULT/DMULTU/DDIV/DDIVU
us1[i]=rs1[i];us2[i]=rs2[i];
}
break;
case MOV:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
if(op2==0x10) rs1[i]=HIREG; // MFHI
if(op2==0x11) rt1[i]=HIREG; // MTHI
if(op2==0x12) rs1[i]=LOREG; // MFLO
if(op2==0x13) rt1[i]=LOREG; // MTLO
if((op2&0x1d)==0x10) rt1[i]=(source[i]>>11)&0x1f; // MFxx
if((op2&0x1d)==0x11) rs1[i]=(source[i]>>21)&0x1f; // MTxx
dep1[i]=rs1[i];
break;
case SHIFT:
rs1[i]=(source[i]>>16)&0x1f; // target of shift
rs2[i]=(source[i]>>21)&0x1f; // shift amount
rt1[i]=(source[i]>>11)&0x1f; // destination
rt2[i]=0;
// DSLLV/DSRLV/DSRAV are 64-bit
if(op2>=0x14&&op2<=0x17) us1[i]=rs1[i];
break;
case SHIFTIMM:
rs1[i]=(source[i]>>16)&0x1f;
rs2[i]=0;
rt1[i]=(source[i]>>11)&0x1f;
rt2[i]=0;
imm[i]=(source[i]>>6)&0x1f;
// DSxx32 instructions
if(op2>=0x3c) imm[i]|=0x20;
// DSLL/DSRL/DSRA/DSRA32/DSRL32 but not DSLL32 require 64-bit source
if(op2>=0x38&&op2!=0x3c) us1[i]=rs1[i];
break;
case COP0:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
if(op2==0) rt1[i]=(source[i]>>16)&0x1F; // MFC0
if(op2==4) rs1[i]=(source[i]>>16)&0x1F; // MTC0
if(op2==4&&((source[i]>>11)&0x1f)==12) rt2[i]=CSREG; // Status
if(op2==16) if((source[i]&0x3f)==0x18) rs2[i]=CCREG; // ERET
break;
case COP1:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
if(op2<3) rt1[i]=(source[i]>>16)&0x1F; // MFC1/DMFC1/CFC1
if(op2>3) rs1[i]=(source[i]>>16)&0x1F; // MTC1/DMTC1/CTC1
if(op2==5) us1[i]=rs1[i]; // DMTC1
rs2[i]=CSREG;
break;
case C1LS:
rs1[i]=(source[i]>>21)&0x1F;
rs2[i]=CSREG;
rt1[i]=0;
rt2[i]=0;
imm[i]=(short)source[i];
break;
case FLOAT:
case FCONV:
rs1[i]=0;
rs2[i]=CSREG;
rt1[i]=0;
rt2[i]=0;
break;
case FCOMP:
rs1[i]=FSREG;
rs2[i]=CSREG;
rt1[i]=FSREG;
rt2[i]=0;
break;
case SYSCALL:
rs1[i]=CCREG;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
break;
default:
rs1[i]=0;
rs2[i]=0;
rt1[i]=0;
rt2[i]=0;
}
/* Calculate branch target addresses */
if(type==UJUMP)
ba[i]=((start+i*4+4)&0xF0000000)|(((unsigned int)source[i]<<6)>>4);
else if(type==CJUMP&&rs1[i]==rs2[i]&&(op&1))
ba[i]=start+i*4+8; // Ignore never taken branch
else if(type==SJUMP&&rs1[i]==0&&!(op2&1))
ba[i]=start+i*4+8; // Ignore never taken branch
else if(type==CJUMP||type==SJUMP||type==FJUMP)
ba[i]=start+i*4+4+((signed int)((unsigned int)source[i]<<16)>>14);
else ba[i]=-1;
/* Is this the end of the block? */
if(i>0&&(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)) {
if(rt1[i-1]==0) { // Continue past subroutine call (JAL)
done=1;
// Does the block continue due to a branch?
for(j=i-1;j>=0;j--)
{
if(ba[j]==start+i*4) done=j=0; // Branch into delay slot
if(ba[j]==start+i*4+4) done=j=0;
if(ba[j]==start+i*4+8) done=j=0;
}
}
else {
if(stop_after_jal) done=1;
// Stop on BREAK
if((source[i+1]&0xfc00003f)==0x0d) done=1;
}
// Don't recompile stuff that's already compiled
if(check_addr(start+i*4+4)) done=1;
// Don't get too close to the limit
if(i>MAXBLOCK/2) done=1;
}
if(i>0&&itype[i]==SYSCALL&&stop_after_jal) done=1;
assert(i<MAXBLOCK-1);
if(start+i*4==pagelimit-4) done=1;
assert(start+i*4<pagelimit);
if (i==MAXBLOCK-1) done=1;
// Stop if we're compiling junk
if(itype[i]==NI&&opcode[i]==0x11) {
done=stop_after_jal=1;
DebugMessage(M64MSG_VERBOSE, "Disabled speculative precompilation");
}
}
slen=i;
if(itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==RJUMP||itype[i-1]==FJUMP) {
if(start+i*4==pagelimit) {
itype[i-1]=SPAN;
}
}
assert(slen>0);
/* Pass 2 - Register dependencies and branch targets */
unneeded_registers(0,slen-1,0);
/* Pass 3 - Register allocation */
struct regstat current; // Current register allocations/status
current.is32=1;
current.dirty=0;
current.u=unneeded_reg[0];
current.uu=unneeded_reg_upper[0];
clear_all_regs(current.regmap);
alloc_reg(&current,0,CCREG);
dirty_reg(&current,CCREG);
current.isconst=0;
current.wasconst=0;
int ds=0;
int cc=0;
int hr;
provisional_32bit();
if((u_int)addr&1) {
// First instruction is delay slot
cc=-1;
bt[1]=1;
ds=1;
unneeded_reg[0]=1;
unneeded_reg_upper[0]=1;
current.regmap[HOST_BTREG]=BTREG;
}
for(i=0;i<slen;i++)
{
if(bt[i])
{
int hr;
for(hr=0;hr<HOST_REGS;hr++)
{
// Is this really necessary?
if(current.regmap[hr]==0) current.regmap[hr]=-1;
}
current.isconst=0;
}
if(i>1)
{
if((opcode[i-2]&0x2f)==0x05) // BNE/BNEL
{
if(rs1[i-2]==0||rs2[i-2]==0)
{
if(rs1[i-2]) {
current.is32|=1LL<<rs1[i-2];
int hr=get_reg(current.regmap,rs1[i-2]|64);
if(hr>=0) current.regmap[hr]=-1;
}
if(rs2[i-2]) {
current.is32|=1LL<<rs2[i-2];
int hr=get_reg(current.regmap,rs2[i-2]|64);
if(hr>=0) current.regmap[hr]=-1;
}
}
}
}
// If something jumps here with 64-bit values
// then promote those registers to 64 bits
if(bt[i])
{
uint64_t temp_is32=current.is32;
for(j=i-1;j>=0;j--)
{
if(ba[j]==start+i*4)
temp_is32&=branch_regs[j].is32;
}
for(j=i;j<slen;j++)
{
if(ba[j]==start+i*4)
//temp_is32=1;
temp_is32&=p32[j];
}
if(temp_is32!=current.is32) {
//DebugMessage(M64MSG_VERBOSE, "dumping 32-bit regs (%x)",start+i*4);
#ifndef DESTRUCTIVE_WRITEBACK
if(ds)
#endif
for(hr=0;hr<HOST_REGS;hr++)
{
int r=current.regmap[hr];
if(r>0&&r<64)
{
if((current.dirty>>hr)&((current.is32&~temp_is32)>>r)&1) {
temp_is32|=1LL<<r;
//DebugMessage(M64MSG_VERBOSE, "restore %d",r);
}
}
}
current.is32=temp_is32;
}
}
memcpy(regmap_pre[i],current.regmap,sizeof(current.regmap));
regs[i].wasconst=current.isconst;
regs[i].was32=current.is32;
regs[i].wasdirty=current.dirty;
#ifdef DESTRUCTIVE_WRITEBACK
// To change a dirty register from 32 to 64 bits, we must write
// it out during the previous cycle (for branches, 2 cycles)
if(i<slen-1&&bt[i+1]&&itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP)
{
uint64_t temp_is32=current.is32;
for(j=i-1;j>=0;j--)
{
if(ba[j]==start+i*4+4)
temp_is32&=branch_regs[j].is32;
}
for(j=i;j<slen;j++)
{
if(ba[j]==start+i*4+4)
//temp_is32=1;
temp_is32&=p32[j];
}
if(temp_is32!=current.is32) {
//DebugMessage(M64MSG_VERBOSE, "pre-dumping 32-bit regs (%x)",start+i*4);
for(hr=0;hr<HOST_REGS;hr++)
{
int r=current.regmap[hr];
if(r>0)
{
if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP)
{
if(rs1[i]!=(r&63)&&rs2[i]!=(r&63))
{
//DebugMessage(M64MSG_VERBOSE, "dump %d/r%d",hr,r);
current.regmap[hr]=-1;
if(get_reg(current.regmap,r|64)>=0)
current.regmap[get_reg(current.regmap,r|64)]=-1;
}
}
}
}
}
}
}
else if(i<slen-2&&bt[i+2]&&(source[i-1]>>16)!=0x1000&&(itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP))
{
uint64_t temp_is32=current.is32;
for(j=i-1;j>=0;j--)
{
if(ba[j]==start+i*4+8)
temp_is32&=branch_regs[j].is32;
}
for(j=i;j<slen;j++)
{
if(ba[j]==start+i*4+8)
//temp_is32=1;
temp_is32&=p32[j];
}
if(temp_is32!=current.is32) {
//DebugMessage(M64MSG_VERBOSE, "pre-dumping 32-bit regs (%x)",start+i*4);
for(hr=0;hr<HOST_REGS;hr++)
{
int r=current.regmap[hr];
if(r>0)
{
if((current.dirty>>hr)&((current.is32&~temp_is32)>>(r&63))&1) {
if(rs1[i]!=(r&63)&&rs2[i]!=(r&63)&&rs1[i+1]!=(r&63)&&rs2[i+1]!=(r&63))
{
//DebugMessage(M64MSG_VERBOSE, "dump %d/r%d",hr,r);
current.regmap[hr]=-1;
if(get_reg(current.regmap,r|64)>=0)
current.regmap[get_reg(current.regmap,r|64)]=-1;
}
}
}
}
}
}
#endif
if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
if(i+1<slen) {
current.u=unneeded_reg[i+1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu=unneeded_reg_upper[i+1]&~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
} else {
current.u=1;
current.uu=1;
}
} else {
if(i+1<slen) {
current.u=branch_unneeded_reg[i]&~((1LL<<rs1[i+1])|(1LL<<rs2[i+1]));
current.uu=branch_unneeded_reg_upper[i]&~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
current.u|=1;
current.uu|=1;
} else { DebugMessage(M64MSG_ERROR, "oops, branch at end of block with no delay slot");exit(1); }
}
is_ds[i]=ds;
if(ds) {
ds=0; // Skip delay slot, already allocated as part of branch
// ...but we need to alloc it in case something jumps here
if(i+1<slen) {
current.u=branch_unneeded_reg[i-1]&unneeded_reg[i+1];
current.uu=branch_unneeded_reg_upper[i-1]&unneeded_reg_upper[i+1];
}else{
current.u=branch_unneeded_reg[i-1];
current.uu=branch_unneeded_reg_upper[i-1];
}
current.u&=~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
struct regstat temp;
memcpy(&temp,&current,sizeof(current));
temp.wasdirty=temp.dirty;
temp.was32=temp.is32;
// TODO: Take into account unconditional branches, as below
delayslot_alloc(&temp,i);
memcpy(regs[i].regmap,temp.regmap,sizeof(temp.regmap));
regs[i].wasdirty=temp.wasdirty;
regs[i].was32=temp.was32;
regs[i].dirty=temp.dirty;
regs[i].is32=temp.is32;
regs[i].isconst=0;
regs[i].wasconst=0;
current.isconst=0;
// Create entry (branch target) regmap
for(hr=0;hr<HOST_REGS;hr++)
{
int r=temp.regmap[hr];
if(r>=0) {
if(r!=regmap_pre[i][hr]) {
regs[i].regmap_entry[hr]=-1;
}
else
{
if(r<64){
if((current.u>>r)&1) {
regs[i].regmap_entry[hr]=-1;
regs[i].regmap[hr]=-1;
//Don't clear regs in the delay slot as the branch might need them
//current.regmap[hr]=-1;
}else
regs[i].regmap_entry[hr]=r;
}
else {
if((current.uu>>(r&63))&1) {
regs[i].regmap_entry[hr]=-1;
regs[i].regmap[hr]=-1;
//Don't clear regs in the delay slot as the branch might need them
//current.regmap[hr]=-1;
}else
regs[i].regmap_entry[hr]=r;
}
}
} else {
// First instruction expects CCREG to be allocated
if(i==0&&hr==HOST_CCREG)
regs[i].regmap_entry[hr]=CCREG;
else
regs[i].regmap_entry[hr]=-1;
}
}
}
else { // Not delay slot
switch(itype[i]) {
case UJUMP:
//current.isconst=0; // DEBUG
//current.wasconst=0; // DEBUG
//regs[i].wasconst=0; // DEBUG
clear_const(&current,rt1[i]);
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
if (rt1[i]==31) {
alloc_reg(&current,i,31);
dirty_reg(&current,31);
assert(rs1[i+1]!=31&&rs2[i+1]!=31);
#ifdef REG_PREFETCH
alloc_reg(&current,i,PTEMP);
#endif
//current.is32|=1LL<<rt1[i];
}
ooo[i]=1;
delayslot_alloc(&current,i+1);
//current.isconst=0; // DEBUG
ds=1;
//DebugMessage(M64MSG_VERBOSE, "i=%d, isconst=%x",i,current.isconst);
break;
case RJUMP:
//current.isconst=0;
//current.wasconst=0;
//regs[i].wasconst=0;
clear_const(&current,rs1[i]);
clear_const(&current,rt1[i]);
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
if((rs1[i]!=rt1[i+1]&&rs1[i]!=rt2[i+1])||(rs1[i]==0)) {
alloc_reg(&current,i,rs1[i]);
if (rt1[i]!=0) {
alloc_reg(&current,i,rt1[i]);
dirty_reg(&current,rt1[i]);
assert(rs1[i+1]!=31&&rs2[i+1]!=31);
#ifdef REG_PREFETCH
alloc_reg(&current,i,PTEMP);
#endif
}
#ifdef USE_MINI_HT
if(rs1[i]==31) { // JALR
alloc_reg(&current,i,RHASH);
#ifndef HOST_IMM_ADDR32
alloc_reg(&current,i,RHTBL);
#endif
}
#endif
delayslot_alloc(&current,i+1);
} else {
// The delay slot overwrites our source register,
// allocate a temporary register to hold the old value.
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
delayslot_alloc(&current,i+1);
current.isconst=0;
alloc_reg(&current,i,RTEMP);
}
//current.isconst=0; // DEBUG
ooo[i]=1;
ds=1;
break;
case CJUMP:
//current.isconst=0;
//current.wasconst=0;
//regs[i].wasconst=0;
clear_const(&current,rs1[i]);
clear_const(&current,rs2[i]);
if((opcode[i]&0x3E)==4) // BEQ/BNE
{
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
if(rs1[i]) alloc_reg(&current,i,rs1[i]);
if(rs2[i]) alloc_reg(&current,i,rs2[i]);
if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
{
if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
}
if((rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1]))||
(rs2[i]&&(rs2[i]==rt1[i+1]||rs2[i]==rt2[i+1]))) {
// The delay slot overwrites one of our conditions.
// Allocate the branch condition registers instead.
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
if(rs1[i]) alloc_reg(&current,i,rs1[i]);
if(rs2[i]) alloc_reg(&current,i,rs2[i]);
if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
{
if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
if(rs2[i]) alloc_reg64(&current,i,rs2[i]);
}
}
else
{
ooo[i]=1;
delayslot_alloc(&current,i+1);
}
}
else
if((opcode[i]&0x3E)==6) // BLEZ/BGTZ
{
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
if(!(current.is32>>rs1[i]&1))
{
alloc_reg64(&current,i,rs1[i]);
}
if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
// The delay slot overwrites one of our conditions.
// Allocate the branch condition registers instead.
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
if(rs1[i]) alloc_reg(&current,i,rs1[i]);
if(!((current.is32>>rs1[i])&1))
{
if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
}
}
else
{
ooo[i]=1;
delayslot_alloc(&current,i+1);
}
}
else
// Don't alloc the delay slot yet because we might not execute it
if((opcode[i]&0x3E)==0x14) // BEQL/BNEL
{
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
alloc_reg(&current,i,rs2[i]);
if(!((current.is32>>rs1[i])&(current.is32>>rs2[i])&1))
{
alloc_reg64(&current,i,rs1[i]);
alloc_reg64(&current,i,rs2[i]);
}
}
else
if((opcode[i]&0x3E)==0x16) // BLEZL/BGTZL
{
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
if(!(current.is32>>rs1[i]&1))
{
alloc_reg64(&current,i,rs1[i]);
}
}
ds=1;
//current.isconst=0;
break;
case SJUMP:
//current.isconst=0;
//current.wasconst=0;
//regs[i].wasconst=0;
clear_const(&current,rs1[i]);
clear_const(&current,rt1[i]);
//if((opcode2[i]&0x1E)==0x0) // BLTZ/BGEZ
if((opcode2[i]&0x0E)==0x0) // BLTZ/BGEZ
{
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
if(!(current.is32>>rs1[i]&1))
{
alloc_reg64(&current,i,rs1[i]);
}
if (rt1[i]==31) { // BLTZAL/BGEZAL
alloc_reg(&current,i,31);
dirty_reg(&current,31);
assert(rs1[i+1]!=31&&rs2[i+1]!=31);
//#ifdef REG_PREFETCH
//alloc_reg(&current,i,PTEMP);
//#endif
//current.is32|=1LL<<rt1[i];
}
if(rs1[i]&&(rs1[i]==rt1[i+1]||rs1[i]==rt2[i+1])) {
// The delay slot overwrites the branch condition.
// Allocate the branch condition registers instead.
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
if(rs1[i]) alloc_reg(&current,i,rs1[i]);
if(!((current.is32>>rs1[i])&1))
{
if(rs1[i]) alloc_reg64(&current,i,rs1[i]);
}
}
else
{
ooo[i]=1;
delayslot_alloc(&current,i+1);
}
}
else
// Don't alloc the delay slot yet because we might not execute it
if((opcode2[i]&0x1E)==0x2) // BLTZL/BGEZL
{
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,rs1[i]);
if(!(current.is32>>rs1[i]&1))
{
alloc_reg64(&current,i,rs1[i]);
}
}
ds=1;
//current.isconst=0;
break;
case FJUMP:
current.isconst=0;
current.wasconst=0;
regs[i].wasconst=0;
if(likely[i]==0) // BC1F/BC1T
{
// TODO: Theoretically we can run out of registers here on x86.
// The delay slot can allocate up to six, and we need to check
// CSREG before executing the delay slot. Possibly we can drop
// the cycle count and then reload it after checking that the
// FPU is in a usable state, or don't do out-of-order execution.
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,FSREG);
alloc_reg(&current,i,CSREG);
if(itype[i+1]==FCOMP) {
// The delay slot overwrites the branch condition.
// Allocate the branch condition registers instead.
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,CSREG);
alloc_reg(&current,i,FSREG);
}
else {
ooo[i]=1;
delayslot_alloc(&current,i+1);
alloc_reg(&current,i+1,CSREG);
}
}
else
// Don't alloc the delay slot yet because we might not execute it
if(likely[i]) // BC1FL/BC1TL
{
alloc_cc(&current,i);
dirty_reg(&current,CCREG);
alloc_reg(&current,i,CSREG);
alloc_reg(&current,i,FSREG);
}
ds=1;
current.isconst=0;
break;
case IMM16:
imm16_alloc(&current,i);
break;
case LOAD:
case LOADLR:
load_alloc(&current,i);
break;
case STORE:
case STORELR:
store_alloc(&current,i);
break;
case ALU:
alu_alloc(&current,i);
break;
case SHIFT:
shift_alloc(&current,i);
break;
case MULTDIV:
multdiv_alloc(&current,i);
break;
case SHIFTIMM:
shiftimm_alloc(&current,i);
break;
case MOV:
mov_alloc(&current,i);
break;
case COP0:
cop0_alloc(&current,i);
break;
case COP1:
cop1_alloc(&current,i);
break;
case C1LS:
c1ls_alloc(&current,i);
break;
case FCONV:
fconv_alloc(&current,i);
break;
case FLOAT:
float_alloc(&current,i);
break;
case FCOMP:
fcomp_alloc(&current,i);
break;
case SYSCALL:
syscall_alloc(&current,i);
break;
case SPAN:
pagespan_alloc(&current,i);
break;
}
// Drop the upper half of registers that have become 32-bit
current.uu|=current.is32&((1LL<<rt1[i])|(1LL<<rt2[i]));
if(itype[i]!=UJUMP&&itype[i]!=CJUMP&&itype[i]!=SJUMP&&itype[i]!=RJUMP&&itype[i]!=FJUMP) {
current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.uu|=1;
} else {
current.uu|=current.is32&((1LL<<rt1[i+1])|(1LL<<rt2[i+1]));
current.uu&=~((1LL<<us1[i+1])|(1LL<<us2[i+1]));
if((~current.uu>>rt1[i+1])&1) current.uu&=~((1LL<<dep1[i+1])|(1LL<<dep2[i+1]));
current.uu&=~((1LL<<us1[i])|(1LL<<us2[i]));
current.uu|=1;
}
// Create entry (branch target) regmap
for(hr=0;hr<HOST_REGS;hr++)
{
int r,or;
r=current.regmap[hr];
if(r>=0) {
if(r!=regmap_pre[i][hr]) {
// TODO: delay slot (?)
or=get_reg(regmap_pre[i],r); // Get old mapping for this register
if(or<0||(r&63)>=TEMPREG){
regs[i].regmap_entry[hr]=-1;
}
else
{
// Just move it to a different register
regs[i].regmap_entry[hr]=r;
// If it was dirty before, it's still dirty
if((regs[i].wasdirty>>or)&1) dirty_reg(&current,r&63);
}
}
else
{
// Unneeded
if(r==0){
regs[i].regmap_entry[hr]=0;
}
else
if(r<64){
if((current.u>>r)&1) {
regs[i].regmap_entry[hr]=-1;
//regs[i].regmap[hr]=-1;
current.regmap[hr]=-1;
}else
regs[i].regmap_entry[hr]=r;
}
else {
if((current.uu>>(r&63))&1) {
regs[i].regmap_entry[hr]=-1;
//regs[i].regmap[hr]=-1;
current.regmap[hr]=-1;
}else
regs[i].regmap_entry[hr]=r;
}
}
} else {
// Branches expect CCREG to be allocated at the target
if(regmap_pre[i][hr]==CCREG)
regs[i].regmap_entry[hr]=CCREG;
else
regs[i].regmap_entry[hr]=-1;
}
}
memcpy(regs[i].regmap,current.regmap,sizeof(current.regmap));
}
/* Branch post-alloc */
if(i>0)
{
current.was32=current.is32;
current.wasdirty=current.dirty;
switch(itype[i-1]) {
case UJUMP:
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
alloc_cc(&branch_regs[i-1],i-1);
dirty_reg(&branch_regs[i-1],CCREG);
if(rt1[i-1]==31) { // JAL
alloc_reg(&branch_regs[i-1],i-1,31);
dirty_reg(&branch_regs[i-1],31);
branch_regs[i-1].is32|=1LL<<31;
}
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
break;
case RJUMP:
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
branch_regs[i-1].u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
branch_regs[i-1].uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
alloc_cc(&branch_regs[i-1],i-1);
dirty_reg(&branch_regs[i-1],CCREG);
alloc_reg(&branch_regs[i-1],i-1,rs1[i-1]);
if(rt1[i-1]!=0) { // JALR
alloc_reg(&branch_regs[i-1],i-1,rt1[i-1]);
dirty_reg(&branch_regs[i-1],rt1[i-1]);
branch_regs[i-1].is32|=1LL<<rt1[i-1];
}
#ifdef USE_MINI_HT
if(rs1[i-1]==31) { // JALR
alloc_reg(&branch_regs[i-1],i-1,RHASH);
#ifndef HOST_IMM_ADDR32
alloc_reg(&branch_regs[i-1],i-1,RHTBL);
#endif
}
#endif
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
break;
case CJUMP:
if((opcode[i-1]&0x3E)==4) // BEQ/BNE
{
alloc_cc(&current,i-1);
dirty_reg(&current,CCREG);
if((rs1[i-1]&&(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]))||
(rs2[i-1]&&(rs2[i-1]==rt1[i]||rs2[i-1]==rt2[i]))) {
// The delay slot overwrote one of our conditions
// Delay slot goes after the test (in order)
current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
delayslot_alloc(&current,i);
current.isconst=0;
}
else
{
current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i-1])|(1LL<<rs2[i-1]));
current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i-1])|(1LL<<us2[i-1]));
// Alloc the branch condition registers
if(rs1[i-1]) alloc_reg(&current,i-1,rs1[i-1]);
if(rs2[i-1]) alloc_reg(&current,i-1,rs2[i-1]);
if(!((current.is32>>rs1[i-1])&(current.is32>>rs2[i-1])&1))
{
if(rs1[i-1]) alloc_reg64(&current,i-1,rs1[i-1]);
if(rs2[i-1]) alloc_reg64(&current,i-1,rs2[i-1]);
}
}
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
}
else
if((opcode[i-1]&0x3E)==6) // BLEZ/BGTZ
{
alloc_cc(&current,i-1);
dirty_reg(&current,CCREG);
if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
// The delay slot overwrote the branch condition
// Delay slot goes after the test (in order)
current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
delayslot_alloc(&current,i);
current.isconst=0;
}
else
{
current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
// Alloc the branch condition register
alloc_reg(&current,i-1,rs1[i-1]);
if(!(current.is32>>rs1[i-1]&1))
{
alloc_reg64(&current,i-1,rs1[i-1]);
}
}
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
}
else
// Alloc the delay slot in case the branch is taken
if((opcode[i-1]&0x3E)==0x14) // BEQL/BNEL
{
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
alloc_cc(&branch_regs[i-1],i);
dirty_reg(&branch_regs[i-1],CCREG);
delayslot_alloc(&branch_regs[i-1],i);
branch_regs[i-1].isconst=0;
alloc_reg(&current,i,CCREG); // Not taken path
dirty_reg(&current,CCREG);
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
}
else
if((opcode[i-1]&0x3E)==0x16) // BLEZL/BGTZL
{
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
alloc_cc(&branch_regs[i-1],i);
dirty_reg(&branch_regs[i-1],CCREG);
delayslot_alloc(&branch_regs[i-1],i);
branch_regs[i-1].isconst=0;
alloc_reg(&current,i,CCREG); // Not taken path
dirty_reg(&current,CCREG);
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
}
break;
case SJUMP:
//if((opcode2[i-1]&0x1E)==0) // BLTZ/BGEZ
if((opcode2[i-1]&0x0E)==0) // BLTZ/BGEZ
{
alloc_cc(&current,i-1);
dirty_reg(&current,CCREG);
if(rs1[i-1]==rt1[i]||rs1[i-1]==rt2[i]) {
// The delay slot overwrote the branch condition
// Delay slot goes after the test (in order)
current.u=branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i]));
current.uu=branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i]));
if((~current.uu>>rt1[i])&1) current.uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]));
current.u|=1;
current.uu|=1;
delayslot_alloc(&current,i);
current.isconst=0;
}
else
{
current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
// Alloc the branch condition register
alloc_reg(&current,i-1,rs1[i-1]);
if(!(current.is32>>rs1[i-1]&1))
{
alloc_reg64(&current,i-1,rs1[i-1]);
}
}
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].isconst=0;
branch_regs[i-1].wasconst=0;
memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
memcpy(constmap[i],constmap[i-1],sizeof(current.constmap));
}
else
// Alloc the delay slot in case the branch is taken
if((opcode2[i-1]&0x1E)==2) // BLTZL/BGEZL
{
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
alloc_cc(&branch_regs[i-1],i);
dirty_reg(&branch_regs[i-1],CCREG);
delayslot_alloc(&branch_regs[i-1],i);
branch_regs[i-1].isconst=0;
alloc_reg(&current,i,CCREG); // Not taken path
dirty_reg(&current,CCREG);
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
}
// FIXME: BLTZAL/BGEZAL
if(opcode2[i-1]&0x10) { // BxxZAL
alloc_reg(&branch_regs[i-1],i-1,31);
dirty_reg(&branch_regs[i-1],31);
branch_regs[i-1].is32|=1LL<<31;
}
break;
case FJUMP:
if(likely[i-1]==0) // BC1F/BC1T
{
alloc_cc(&current,i-1);
dirty_reg(&current,CCREG);
if(itype[i]==FCOMP) {
// The delay slot overwrote the branch condition
// Delay slot goes after the test (in order)
delayslot_alloc(&current,i);
current.isconst=0;
}
else
{
current.u=branch_unneeded_reg[i-1]&~(1LL<<rs1[i-1]);
current.uu=branch_unneeded_reg_upper[i-1]&~(1LL<<us1[i-1]);
// Alloc the branch condition register
alloc_reg(&current,i-1,FSREG);
}
memcpy(&branch_regs[i-1],&current,sizeof(current));
memcpy(&branch_regs[i-1].regmap_entry,&current.regmap,sizeof(current.regmap));
}
else // BC1FL/BC1TL
{
// Alloc the delay slot in case the branch is taken
memcpy(&branch_regs[i-1],&current,sizeof(current));
branch_regs[i-1].u=(branch_unneeded_reg[i-1]&~((1LL<<rs1[i])|(1LL<<rs2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
branch_regs[i-1].uu=(branch_unneeded_reg_upper[i-1]&~((1LL<<us1[i])|(1LL<<us2[i])|(1LL<<rt1[i])|(1LL<<rt2[i])))|1;
if((~branch_regs[i-1].uu>>rt1[i])&1) branch_regs[i-1].uu&=~((1LL<<dep1[i])|(1LL<<dep2[i]))|1;
alloc_cc(&branch_regs[i-1],i);
dirty_reg(&branch_regs[i-1],CCREG);
delayslot_alloc(&branch_regs[i-1],i);
branch_regs[i-1].isconst=0;
alloc_reg(&current,i,CCREG); // Not taken path
dirty_reg(&current,CCREG);
memcpy(&branch_regs[i-1].regmap_entry,&branch_regs[i-1].regmap,sizeof(current.regmap));
}
break;
}
if(itype[i-1]==UJUMP||itype[i-1]==RJUMP||(source[i-1]>>16)==0x1000)
{
if(rt1[i-1]==31) // JAL/JALR
{
// Subroutine call will return here, don't alloc any registers
current.is32=1;
current.dirty=0;
clear_all_regs(current.regmap);
alloc_reg(&current,i,CCREG);
dirty_reg(&current,CCREG);
}
else if(i+1<slen)
{
// Internal branch will jump here, match registers to caller
current.is32=0x3FFFFFFFFLL;
current.dirty=0;
clear_all_regs(current.regmap);
alloc_reg(&current,i,CCREG);
dirty_reg(&current,CCREG);
for(j=i-1;j>=0;j--)
{
if(ba[j]==start+i*4+4) {
memcpy(current.regmap,branch_regs[j].regmap,sizeof(current.regmap));
current.is32=branch_regs[j].is32;
current.dirty=branch_regs[j].dirty;
break;
}
}
while(j>=0) {
if(ba[j]==start+i*4+4) {
for(hr=0;hr<HOST_REGS;hr++) {
if(current.regmap[hr]!=branch_regs[j].regmap[hr]) {
current.regmap[hr]=-1;
}
current.is32&=branch_regs[j].is32;
current.dirty&=branch_regs[j].dirty;
}
}
j--;
}
}
}
}
// Count cycles in between branches
ccadj[i]=cc;
if(i>0&&(itype[i-1]==RJUMP||itype[i-1]==UJUMP||itype[i-1]==CJUMP||itype[i-1]==SJUMP||itype[i-1]==FJUMP||itype[i]==SYSCALL))
{
cc=0;
}
else
{
cc++;
}
flush_dirty_uppers(&current);
if(!is_ds[i]) {
regs[i].is32=current.is32;
regs[i].dirty=current.dirty;
regs[i].isconst=current.isconst;
memcpy(constmap[i],current.constmap,sizeof(current.constmap));
}
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG&&regs[i].regmap[hr]>=0) {
if(regmap_pre[i][hr]!=regs[i].regmap[hr]) {
regs[i].wasconst&=~(1<<hr);
}
}
}
if(current.regmap[HOST_BTREG]==BTREG) current.regmap[HOST_BTREG]=-1;
}
/* Pass 4 - Cull unused host registers */
uint64_t nr=0;
for (i=slen-1;i>=0;i--)
{
int hr=0;
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(ba[i]<start || ba[i]>=(start+slen*4))
{
// Branch out of this block, don't need anything
nr=0;
}
else
{
// Internal branch
// Need whatever matches the target
nr=0;
int t=(ba[i]-start)>>2;
for(hr=0;hr<HOST_REGS;hr++)
{
if(regs[i].regmap_entry[hr]>=0) {
if(regs[i].regmap_entry[hr]==regs[t].regmap_entry[hr]) nr|=(uint64_t)1<<hr;
}
}
}
// Conditional branch may need registers for following instructions
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
{
if(i<slen-2) {
nr|=needed_reg[i+2];
for(hr=0;hr<HOST_REGS;hr++)
{
if(regmap_pre[i+2][hr]>=0&&get_reg(regs[i+2].regmap_entry,regmap_pre[i+2][hr])<0) nr&=~(1<<hr);
//if((regmap_entry[i+2][hr])>=0) if(!((nr>>hr)&1)) DebugMessage(M64MSG_VERBOSE, "%x-bogus(%d=%d)",start+i*4,hr,regmap_entry[i+2][hr]);
}
}
}
// Don't need stuff which is overwritten
if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
// Merge in delay slot
for(hr=0;hr<HOST_REGS;hr++)
{
if(!likely[i]) {
// These are overwritten unless the branch is "likely"
// and the delay slot is nullified if not taken
if(rt1[i+1]&&rt1[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
if(rt2[i+1]&&rt2[i+1]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
}
if(us1[i+1]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
if(us2[i+1]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
if(rs1[i+1]==regmap_pre[i][hr]) nr|=(uint64_t)1<<hr;
if(rs2[i+1]==regmap_pre[i][hr]) nr|=(uint64_t)1<<hr;
if(us1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
if(us2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
if(rs1[i+1]==regs[i].regmap_entry[hr]) nr|=(uint64_t)1<<hr;
if(rs2[i+1]==regs[i].regmap_entry[hr]) nr|=(uint64_t)1<<hr;
if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1)) {
if(dep1[i+1]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
if(dep2[i+1]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
}
if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1)) {
if(dep1[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
if(dep2[i+1]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
}
if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
if(regmap_pre[i][hr]==INVCP) nr|=(uint64_t)1<<hr;
if(regs[i].regmap_entry[hr]==INVCP) nr|=(uint64_t)1<<hr;
}
}
}
else if(itype[i]==SYSCALL)
{
// SYSCALL instruction (software interrupt)
nr=0;
}
else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
{
// ERET instruction (return from interrupt)
nr=0;
}
else // Non-branch
{
if(i<slen-1) {
for(hr=0;hr<HOST_REGS;hr++) {
if(regmap_pre[i+1][hr]>=0&&get_reg(regs[i+1].regmap_entry,regmap_pre[i+1][hr])<0) nr&=~(1<<hr);
if(regs[i].regmap[hr]!=regmap_pre[i+1][hr]) nr&=~(1<<hr);
if(regs[i].regmap[hr]!=regmap_pre[i][hr]) nr&=~(1<<hr);
if(regs[i].regmap[hr]<0) nr&=~(1<<hr);
}
}
}
for(hr=0;hr<HOST_REGS;hr++)
{
// Overwritten registers are not needed
if(rt1[i]&&rt1[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
if(rt2[i]&&rt2[i]==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
if(FTEMP==(regs[i].regmap[hr]&63)) nr&=~(1<<hr);
// Source registers are needed
if(us1[i]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
if(us2[i]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
if(rs1[i]==regmap_pre[i][hr]) nr|=(uint64_t)1<<hr;
if(rs2[i]==regmap_pre[i][hr]) nr|=(uint64_t)1<<hr;
if(us1[i]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
if(us2[i]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
if(rs1[i]==regs[i].regmap_entry[hr]) nr|=(uint64_t)1<<hr;
if(rs2[i]==regs[i].regmap_entry[hr]) nr|=(uint64_t)1<<hr;
if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1)) {
if(dep1[i]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
if(dep1[i]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
}
if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1)) {
if(dep2[i]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
if(dep2[i]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
}
if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
if(regmap_pre[i][hr]==INVCP) nr|=(uint64_t)1<<hr;
if(regs[i].regmap_entry[hr]==INVCP) nr|=(uint64_t)1<<hr;
}
// Don't store a register immediately after writing it,
// may prevent dual-issue.
// But do so if this is a branch target, otherwise we
// might have to load the register before the branch.
if(i>0&&!bt[i]&&((regs[i].wasdirty>>hr)&1)) {
if((regmap_pre[i][hr]>0&&regmap_pre[i][hr]<64&&!((unneeded_reg[i]>>regmap_pre[i][hr])&1)) ||
(regmap_pre[i][hr]>64&&!((unneeded_reg_upper[i]>>(regmap_pre[i][hr]&63))&1)) ) {
if(rt1[i-1]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
if(rt2[i-1]==(regmap_pre[i][hr]&63)) nr|=(uint64_t)1<<hr;
}
if((regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64&&!((unneeded_reg[i]>>regs[i].regmap_entry[hr])&1)) ||
(regs[i].regmap_entry[hr]>64&&!((unneeded_reg_upper[i]>>(regs[i].regmap_entry[hr]&63))&1)) ) {
if(rt1[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
if(rt2[i-1]==(regs[i].regmap_entry[hr]&63)) nr|=(uint64_t)1<<hr;
}
}
}
// Cycle count is needed at branches. Assume it is needed at the target too.
if(i==0||bt[i]||itype[i]==CJUMP||itype[i]==FJUMP||itype[i]==SPAN) {
if(regmap_pre[i][HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
if(regs[i].regmap_entry[HOST_CCREG]==CCREG) nr|=1<<HOST_CCREG;
}
// Save it
needed_reg[i]=nr;
// Deallocate unneeded registers
for(hr=0;hr<HOST_REGS;hr++)
{
if(!((nr>>hr)&1)) {
if(regs[i].regmap_entry[hr]!=CCREG) regs[i].regmap_entry[hr]=-1;
if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
(regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
(regs[i].regmap[hr]&63)!=PTEMP && (regs[i].regmap[hr]&63)!=CCREG)
{
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
{
if(likely[i]) {
regs[i].regmap[hr]=-1;
regs[i].isconst&=~(1<<hr);
if(i<slen-2) {
regmap_pre[i+2][hr]=-1;
regs[i+2].wasconst&=~(1<<hr);
}
}
}
}
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
int d1=0,d2=0,map=0,temp=0;
if(get_reg(regs[i].regmap,rt1[i+1]|64)>=0||get_reg(branch_regs[i].regmap,rt1[i+1]|64)>=0)
{
d1=dep1[i+1];
d2=dep2[i+1];
}
if(using_tlb) {
if(itype[i+1]==LOAD || itype[i+1]==LOADLR ||
itype[i+1]==STORE || itype[i+1]==STORELR ||
itype[i+1]==C1LS )
map=TLREG;
} else
if(itype[i+1]==STORE || itype[i+1]==STORELR || (opcode[i+1]&0x3b)==0x39) {
map=INVCP;
}
if(itype[i+1]==LOADLR || itype[i+1]==STORELR ||
itype[i+1]==C1LS )
temp=FTEMP;
if((regs[i].regmap[hr]&63)!=rs1[i] && (regs[i].regmap[hr]&63)!=rs2[i] &&
(regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
(regs[i].regmap[hr]&63)!=rt1[i+1] && (regs[i].regmap[hr]&63)!=rt2[i+1] &&
(regs[i].regmap[hr]^64)!=us1[i+1] && (regs[i].regmap[hr]^64)!=us2[i+1] &&
(regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
regs[i].regmap[hr]!=rs1[i+1] && regs[i].regmap[hr]!=rs2[i+1] &&
(regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=PTEMP &&
regs[i].regmap[hr]!=RHASH && regs[i].regmap[hr]!=RHTBL &&
regs[i].regmap[hr]!=RTEMP && regs[i].regmap[hr]!=CCREG &&
regs[i].regmap[hr]!=map )
{
regs[i].regmap[hr]=-1;
regs[i].isconst&=~(1<<hr);
if((branch_regs[i].regmap[hr]&63)!=rs1[i] && (branch_regs[i].regmap[hr]&63)!=rs2[i] &&
(branch_regs[i].regmap[hr]&63)!=rt1[i] && (branch_regs[i].regmap[hr]&63)!=rt2[i] &&
(branch_regs[i].regmap[hr]&63)!=rt1[i+1] && (branch_regs[i].regmap[hr]&63)!=rt2[i+1] &&
(branch_regs[i].regmap[hr]^64)!=us1[i+1] && (branch_regs[i].regmap[hr]^64)!=us2[i+1] &&
(branch_regs[i].regmap[hr]^64)!=d1 && (branch_regs[i].regmap[hr]^64)!=d2 &&
branch_regs[i].regmap[hr]!=rs1[i+1] && branch_regs[i].regmap[hr]!=rs2[i+1] &&
(branch_regs[i].regmap[hr]&63)!=temp && branch_regs[i].regmap[hr]!=PTEMP &&
branch_regs[i].regmap[hr]!=RHASH && branch_regs[i].regmap[hr]!=RHTBL &&
branch_regs[i].regmap[hr]!=RTEMP && branch_regs[i].regmap[hr]!=CCREG &&
branch_regs[i].regmap[hr]!=map)
{
branch_regs[i].regmap[hr]=-1;
branch_regs[i].regmap_entry[hr]=-1;
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
{
if(!likely[i]&&i<slen-2) {
regmap_pre[i+2][hr]=-1;
regs[i+2].wasconst&=~(1<<hr);
}
}
}
}
}
else
{
// Non-branch
if(i>0)
{
int d1=0,d2=0,map=-1,temp=-1;
if(get_reg(regs[i].regmap,rt1[i]|64)>=0)
{
d1=dep1[i];
d2=dep2[i];
}
if(using_tlb) {
if(itype[i]==LOAD || itype[i]==LOADLR ||
itype[i]==STORE || itype[i]==STORELR ||
itype[i]==C1LS )
map=TLREG;
} else if(itype[i]==STORE || itype[i]==STORELR || (opcode[i]&0x3b)==0x39) {
map=INVCP;
}
if(itype[i]==LOADLR || itype[i]==STORELR ||
itype[i]==C1LS )
temp=FTEMP;
if((regs[i].regmap[hr]&63)!=rt1[i] && (regs[i].regmap[hr]&63)!=rt2[i] &&
(regs[i].regmap[hr]^64)!=us1[i] && (regs[i].regmap[hr]^64)!=us2[i] &&
(regs[i].regmap[hr]^64)!=d1 && (regs[i].regmap[hr]^64)!=d2 &&
regs[i].regmap[hr]!=rs1[i] && regs[i].regmap[hr]!=rs2[i] &&
(regs[i].regmap[hr]&63)!=temp && regs[i].regmap[hr]!=map &&
(itype[i]!=SPAN||regs[i].regmap[hr]!=CCREG))
{
if(i<slen-1&&!is_ds[i]) {
if(regmap_pre[i+1][hr]!=-1 || regs[i].regmap[hr]!=-1)
if(regmap_pre[i+1][hr]!=regs[i].regmap[hr])
if(regs[i].regmap[hr]<64||!((regs[i].was32>>(regs[i].regmap[hr]&63))&1))
{
DebugMessage(M64MSG_VERBOSE, "fail: %x (%d %d!=%d)",start+i*4,hr,regmap_pre[i+1][hr],regs[i].regmap[hr]);
assert(regmap_pre[i+1][hr]==regs[i].regmap[hr]);
}
regmap_pre[i+1][hr]=-1;
if(regs[i+1].regmap_entry[hr]==CCREG) regs[i+1].regmap_entry[hr]=-1;
regs[i+1].wasconst&=~(1<<hr);
}
regs[i].regmap[hr]=-1;
regs[i].isconst&=~(1<<hr);
}
}
}
}
}
}
/* Pass 5 - Pre-allocate registers */
// If a register is allocated during a loop, try to allocate it for the
// entire loop, if possible. This avoids loading/storing registers
// inside of the loop.
signed char f_regmap[HOST_REGS];
clear_all_regs(f_regmap);
for(i=0;i<slen-1;i++)
{
if(itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(ba[i]>=start && ba[i]<(start+i*4))
if(itype[i+1]==NOP||itype[i+1]==MOV||itype[i+1]==ALU
||itype[i+1]==SHIFTIMM||itype[i+1]==IMM16||itype[i+1]==LOAD
||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS
||itype[i+1]==SHIFT||itype[i+1]==COP1||itype[i+1]==FLOAT
||itype[i+1]==FCOMP||itype[i+1]==FCONV)
{
int t=(ba[i]-start)>>2;
if(t>0&&(itype[t-1]!=UJUMP&&itype[t-1]!=RJUMP&&itype[t-1]!=CJUMP&&itype[t-1]!=SJUMP&&itype[t-1]!=FJUMP)) // loop_preload can't handle jumps into delay slots
if(t<2||(itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||rt1[t-2]!=31) // call/ret assumes no registers allocated
for(hr=0;hr<HOST_REGS;hr++)
{
if(regs[i].regmap[hr]>64) {
if(!((regs[i].dirty>>hr)&1))
f_regmap[hr]=regs[i].regmap[hr];
else f_regmap[hr]=-1;
}
else if(regs[i].regmap[hr]>=0) {
if(f_regmap[hr]!=regs[i].regmap[hr]) {
// dealloc old register
int n;
for(n=0;n<HOST_REGS;n++)
{
if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
}
// and alloc new one
f_regmap[hr]=regs[i].regmap[hr];
}
}
if(branch_regs[i].regmap[hr]>64) {
if(!((branch_regs[i].dirty>>hr)&1))
f_regmap[hr]=branch_regs[i].regmap[hr];
else f_regmap[hr]=-1;
}
else if(branch_regs[i].regmap[hr]>=0) {
if(f_regmap[hr]!=branch_regs[i].regmap[hr]) {
// dealloc old register
int n;
for(n=0;n<HOST_REGS;n++)
{
if(f_regmap[n]==branch_regs[i].regmap[hr]) {f_regmap[n]=-1;}
}
// and alloc new one
f_regmap[hr]=branch_regs[i].regmap[hr];
}
}
if(ooo[i]) {
if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1])
f_regmap[hr]=branch_regs[i].regmap[hr];
}else{
if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1])
f_regmap[hr]=branch_regs[i].regmap[hr];
}
// Avoid dirty->clean transition
#ifdef DESTRUCTIVE_WRITEBACK
if(t>0) if(get_reg(regmap_pre[t],f_regmap[hr])>=0) if((regs[t].wasdirty>>get_reg(regmap_pre[t],f_regmap[hr]))&1) f_regmap[hr]=-1;
#endif
// This check is only strictly required in the DESTRUCTIVE_WRITEBACK
// case above, however it's always a good idea. We can't hoist the
// load if the register was already allocated, so there's no point
// wasting time analyzing most of these cases. It only "succeeds"
// when the mapping was different and the load can be replaced with
// a mov, which is of negligible benefit. So such cases are
// skipped below.
if(f_regmap[hr]>0) {
if(regs[t].regmap[hr]==f_regmap[hr]||(regs[t].regmap_entry[hr]<0&&get_reg(regmap_pre[t],f_regmap[hr])<0)) {
int r=f_regmap[hr];
for(j=t;j<=i;j++)
{
//DebugMessage(M64MSG_VERBOSE, "Test %x -> %x, %x %d/%d",start+i*4,ba[i],start+j*4,hr,r);
if(r<34&&((unneeded_reg[j]>>r)&1)) break;
if(r>63&&((unneeded_reg_upper[j]>>(r&63))&1)) break;
if(r>63) {
// NB This can exclude the case where the upper-half
// register is lower numbered than the lower-half
// register. Not sure if it's worth fixing...
if(get_reg(regs[j].regmap,r&63)<0) break;
if(get_reg(regs[j].regmap_entry,r&63)<0) break;
if(regs[j].is32&(1LL<<(r&63))) break;
}
if(regs[j].regmap[hr]==f_regmap[hr]&&(f_regmap[hr]&63)<TEMPREG) {
//DebugMessage(M64MSG_VERBOSE, "Hit %x -> %x, %x %d/%d",start+i*4,ba[i],start+j*4,hr,r);
int k;
if(regs[i].regmap[hr]==-1&&branch_regs[i].regmap[hr]==-1) {
if(get_reg(regs[i+2].regmap,f_regmap[hr])>=0) break;
if(r>63) {
if(get_reg(regs[i].regmap,r&63)<0) break;
if(get_reg(branch_regs[i].regmap,r&63)<0) break;
}
k=i;
while(k>1&&regs[k-1].regmap[hr]==-1) {
if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
//DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+(k-1)*4);
break;
}
if(get_reg(regs[k-1].regmap,f_regmap[hr])>=0) {
//DebugMessage(M64MSG_VERBOSE, "no-match due to different register");
break;
}
if(itype[k-2]==UJUMP||itype[k-2]==RJUMP||itype[k-2]==CJUMP||itype[k-2]==SJUMP||itype[k-2]==FJUMP) {
//DebugMessage(M64MSG_VERBOSE, "no-match due to branch");
break;
}
// call/ret fast path assumes no registers allocated
if(k>2&&(itype[k-3]==UJUMP||itype[k-3]==RJUMP)&&rt1[k-3]==31) {
break;
}
if(r>63) {
// NB This can exclude the case where the upper-half
// register is lower numbered than the lower-half
// register. Not sure if it's worth fixing...
if(get_reg(regs[k-1].regmap,r&63)<0) break;
if(regs[k-1].is32&(1LL<<(r&63))) break;
}
k--;
}
if(i<slen-1) {
if((regs[k].is32&(1LL<<(f_regmap[hr]&63)))!=
(regs[i+2].was32&(1LL<<(f_regmap[hr]&63)))) {
//DebugMessage(M64MSG_VERBOSE, "bad match after branch");
break;
}
}
if(regs[k-1].regmap[hr]==f_regmap[hr]&&regmap_pre[k][hr]==f_regmap[hr]) {
//DebugMessage(M64MSG_VERBOSE, "Extend r%d, %x ->",hr,start+k*4);
while(k<i) {
regs[k].regmap_entry[hr]=f_regmap[hr];
regs[k].regmap[hr]=f_regmap[hr];
regmap_pre[k+1][hr]=f_regmap[hr];
regs[k].wasdirty&=~(1<<hr);
regs[k].dirty&=~(1<<hr);
regs[k].wasdirty|=(uint64_t)(1<<hr)&regs[k-1].dirty;
regs[k].dirty|=(uint64_t)(1<<hr)&regs[k].wasdirty;
regs[k].wasconst&=~(1<<hr);
regs[k].isconst&=~(1<<hr);
k++;
}
}
else {
//DebugMessage(M64MSG_VERBOSE, "Fail Extend r%d, %x ->",hr,start+k*4);
break;
}
assert(regs[i-1].regmap[hr]==f_regmap[hr]);
if(regs[i-1].regmap[hr]==f_regmap[hr]&&regmap_pre[i][hr]==f_regmap[hr]) {
//DebugMessage(M64MSG_VERBOSE, "OK fill %x (r%d)",start+i*4,hr);
regs[i].regmap_entry[hr]=f_regmap[hr];
regs[i].regmap[hr]=f_regmap[hr];
regs[i].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
regs[i].wasdirty|=(uint64_t)(1<<hr)&regs[i-1].dirty;
regs[i].dirty|=(uint64_t)(1<<hr)&regs[i-1].dirty;
regs[i].wasconst&=~(1<<hr);
regs[i].isconst&=~(1<<hr);
branch_regs[i].regmap_entry[hr]=f_regmap[hr];
branch_regs[i].wasdirty&=~(1<<hr);
branch_regs[i].wasdirty|=(uint64_t)(1<<hr)&regs[i].dirty;
branch_regs[i].regmap[hr]=f_regmap[hr];
branch_regs[i].dirty&=~(1<<hr);
branch_regs[i].dirty|=(uint64_t)(1<<hr)&regs[i].dirty;
branch_regs[i].wasconst&=~(1<<hr);
branch_regs[i].isconst&=~(1<<hr);
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000) {
regmap_pre[i+2][hr]=f_regmap[hr];
regs[i+2].wasdirty&=~(1<<hr);
regs[i+2].wasdirty|=(uint64_t)(1<<hr)&regs[i].dirty;
assert((branch_regs[i].is32&(1LL<<(f_regmap[hr]&63)))==
(regs[i+2].was32&(1LL<<(f_regmap[hr]&63))));
}
}
}
for(k=t;k<j;k++) {
// Alloc register clean at beginning of loop,
// but may dirty it in pass 6
regs[k].regmap_entry[hr]=f_regmap[hr];
regs[k].regmap[hr]=f_regmap[hr];
regs[k].dirty&=~(1<<hr);
regs[k].wasconst&=~(1<<hr);
regs[k].isconst&=~(1<<hr);
if(itype[k]==UJUMP||itype[k]==RJUMP||itype[k]==CJUMP||itype[k]==SJUMP||itype[k]==FJUMP) {
branch_regs[k].regmap_entry[hr]=f_regmap[hr];
branch_regs[k].regmap[hr]=f_regmap[hr];
branch_regs[k].dirty&=~(1<<hr);
branch_regs[k].wasconst&=~(1<<hr);
branch_regs[k].isconst&=~(1<<hr);
if(itype[k]!=RJUMP&&itype[k]!=UJUMP&&(source[k]>>16)!=0x1000) {
regmap_pre[k+2][hr]=f_regmap[hr];
regs[k+2].wasdirty&=~(1<<hr);
assert((branch_regs[k].is32&(1LL<<(f_regmap[hr]&63)))==
(regs[k+2].was32&(1LL<<(f_regmap[hr]&63))));
}
}
else
{
regmap_pre[k+1][hr]=f_regmap[hr];
regs[k+1].wasdirty&=~(1<<hr);
}
}
if(regs[j].regmap[hr]==f_regmap[hr])
regs[j].regmap_entry[hr]=f_regmap[hr];
break;
}
if(j==i) break;
if(regs[j].regmap[hr]>=0)
break;
if(get_reg(regs[j].regmap,f_regmap[hr])>=0) {
//DebugMessage(M64MSG_VERBOSE, "no-match due to different register");
break;
}
if((regs[j+1].is32&(1LL<<(f_regmap[hr]&63)))!=(regs[j].is32&(1LL<<(f_regmap[hr]&63)))) {
//DebugMessage(M64MSG_VERBOSE, "32/64 mismatch %x %d",start+j*4,hr);
break;
}
if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
{
// Stop on unconditional branch
break;
}
if(itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP)
{
if(ooo[j]) {
if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1])
break;
}else{
if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1])
break;
}
if(get_reg(branch_regs[j].regmap,f_regmap[hr])>=0) {
//DebugMessage(M64MSG_VERBOSE, "no-match due to different register (branch)");
break;
}
}
if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
//DebugMessage(M64MSG_VERBOSE, "No free regs for store %x",start+j*4);
break;
}
if(f_regmap[hr]>=64) {
if(regs[j].is32&(1LL<<(f_regmap[hr]&63))) {
break;
}
else
{
if(get_reg(regs[j].regmap,f_regmap[hr]&63)<0) {
break;
}
}
}
}
}
}
}
}
}else{
// Non branch or undetermined branch target
for(hr=0;hr<HOST_REGS;hr++)
{
if(hr!=EXCLUDE_REG) {
if(regs[i].regmap[hr]>64) {
if(!((regs[i].dirty>>hr)&1))
f_regmap[hr]=regs[i].regmap[hr];
}
else if(regs[i].regmap[hr]>=0) {
if(f_regmap[hr]!=regs[i].regmap[hr]) {
// dealloc old register
int n;
for(n=0;n<HOST_REGS;n++)
{
if(f_regmap[n]==regs[i].regmap[hr]) {f_regmap[n]=-1;}
}
// and alloc new one
f_regmap[hr]=regs[i].regmap[hr];
}
}
}
}
// Try to restore cycle count at branch targets
if(bt[i]) {
for(j=i;j<slen-1;j++) {
if(regs[j].regmap[HOST_CCREG]!=-1) break;
if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) {
//DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+j*4);
break;
}
}
if(regs[j].regmap[HOST_CCREG]==CCREG) {
int k=i;
//DebugMessage(M64MSG_VERBOSE, "Extend CC, %x -> %x",start+k*4,start+j*4);
while(k<j) {
regs[k].regmap_entry[HOST_CCREG]=CCREG;
regs[k].regmap[HOST_CCREG]=CCREG;
regmap_pre[k+1][HOST_CCREG]=CCREG;
regs[k+1].wasdirty|=1<<HOST_CCREG;
regs[k].dirty|=1<<HOST_CCREG;
regs[k].wasconst&=~(1<<HOST_CCREG);
regs[k].isconst&=~(1<<HOST_CCREG);
k++;
}
regs[j].regmap_entry[HOST_CCREG]=CCREG;
}
// Work backwards from the branch target
if(j>i&&f_regmap[HOST_CCREG]==CCREG)
{
//DebugMessage(M64MSG_VERBOSE, "Extend backwards");
int k;
k=i;
while(regs[k-1].regmap[HOST_CCREG]==-1) {
if(count_free_regs(regs[k-1].regmap)<=minimum_free_regs[k-1]) {
//DebugMessage(M64MSG_VERBOSE, "no free regs for store %x",start+(k-1)*4);
break;
}
k--;
}
if(regs[k-1].regmap[HOST_CCREG]==CCREG) {
//DebugMessage(M64MSG_VERBOSE, "Extend CC, %x ->",start+k*4);
while(k<=i) {
regs[k].regmap_entry[HOST_CCREG]=CCREG;
regs[k].regmap[HOST_CCREG]=CCREG;
regmap_pre[k+1][HOST_CCREG]=CCREG;
regs[k+1].wasdirty|=1<<HOST_CCREG;
regs[k].dirty|=1<<HOST_CCREG;
regs[k].wasconst&=~(1<<HOST_CCREG);
regs[k].isconst&=~(1<<HOST_CCREG);
k++;
}
}
else {
//DebugMessage(M64MSG_VERBOSE, "Fail Extend CC, %x ->",start+k*4);
}
}
}
if(itype[i]!=STORE&&itype[i]!=STORELR&&itype[i]!=C1LS&&itype[i]!=SHIFT&&
itype[i]!=NOP&&itype[i]!=MOV&&itype[i]!=ALU&&itype[i]!=SHIFTIMM&&
itype[i]!=IMM16&&itype[i]!=LOAD&&itype[i]!=COP1&&itype[i]!=FLOAT&&
itype[i]!=FCONV&&itype[i]!=FCOMP)
{
memcpy(f_regmap,regs[i].regmap,sizeof(f_regmap));
}
}
}
// Cache memory offset or tlb map pointer if a register is available
#ifndef HOST_IMM_ADDR32
#ifndef RAM_OFFSET
if(using_tlb)
#endif
{
int earliest_available[HOST_REGS];
int loop_start[HOST_REGS];
int score[HOST_REGS];
int end[HOST_REGS];
int reg=using_tlb?MMREG:ROREG;
// Init
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=0;
loop_start[hr]=MAXBLOCK;
}
for(i=0;i<slen-1;i++)
{
// Can't do anything if no registers are available
if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i]) {
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+1;
loop_start[hr]=MAXBLOCK;
}
}
if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
if(!ooo[i]) {
if(count_free_regs(branch_regs[i].regmap)<=minimum_free_regs[i+1]) {
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+1;
loop_start[hr]=MAXBLOCK;
}
}
}else{
if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i+1]) {
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+1;
loop_start[hr]=MAXBLOCK;
}
}
}
}
// Mark unavailable registers
for(hr=0;hr<HOST_REGS;hr++) {
if(regs[i].regmap[hr]>=0) {
score[hr]=0;earliest_available[hr]=i+1;
loop_start[hr]=MAXBLOCK;
}
if(itype[i]==UJUMP||itype[i]==RJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
if(branch_regs[i].regmap[hr]>=0) {
score[hr]=0;earliest_available[hr]=i+2;
loop_start[hr]=MAXBLOCK;
}
}
}
// No register allocations after unconditional jumps
if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
{
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+2;
loop_start[hr]=MAXBLOCK;
}
i++; // Skip delay slot too
//DebugMessage(M64MSG_VERBOSE, "skip delay slot: %x",start+i*4);
}
else
// Possible match
if(itype[i]==LOAD||itype[i]==LOADLR||
itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS) {
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
end[hr]=i-1;
for(j=i;j<slen-1;j++) {
if(regs[j].regmap[hr]>=0) break;
if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
if(branch_regs[j].regmap[hr]>=0) break;
if(ooo[j]) {
if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j+1]) break;
}else{
if(count_free_regs(branch_regs[j].regmap)<=minimum_free_regs[j+1]) break;
}
}
else if(count_free_regs(regs[j].regmap)<=minimum_free_regs[j]) break;
if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
int t=(ba[j]-start)>>2;
if(t<j&&t>=earliest_available[hr]) {
if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) { // call/ret assumes no registers allocated
// Score a point for hoisting loop invariant
if(t<loop_start[hr]) loop_start[hr]=t;
//DebugMessage(M64MSG_VERBOSE, "set loop_start: i=%x j=%x (%x)",start+i*4,start+j*4,start+t*4);
score[hr]++;
end[hr]=j;
}
}
else if(t<j) {
if(regs[t].regmap[hr]==reg) {
// Score a point if the branch target matches this register
score[hr]++;
end[hr]=j;
}
}
if(itype[j+1]==LOAD||itype[j+1]==LOADLR||
itype[j+1]==STORE||itype[j+1]==STORELR||itype[j+1]==C1LS) {
score[hr]++;
end[hr]=j;
}
}
if(itype[j]==UJUMP||itype[j]==RJUMP||(source[j]>>16)==0x1000)
{
// Stop on unconditional branch
break;
}
else
if(itype[j]==LOAD||itype[j]==LOADLR||
itype[j]==STORE||itype[j]==STORELR||itype[j]==C1LS) {
score[hr]++;
end[hr]=j;
}
}
}
}
// Find highest score and allocate that register
int maxscore=0;
for(hr=0;hr<HOST_REGS;hr++) {
if(hr!=EXCLUDE_REG) {
if(score[hr]>score[maxscore]) {
maxscore=hr;
//DebugMessage(M64MSG_VERBOSE, "highest score: %d %d (%x->%x)",score[hr],hr,start+i*4,start+end[hr]*4);
}
}
}
if(score[maxscore]>1)
{
if(i<loop_start[maxscore]) loop_start[maxscore]=i;
for(j=loop_start[maxscore];j<slen&&j<=end[maxscore];j++) {
//if(regs[j].regmap[maxscore]>=0) {DebugMessage(M64MSG_ERROR, "oops: %x %x was %d=%d",loop_start[maxscore]*4+start,j*4+start,maxscore,regs[j].regmap[maxscore]);}
assert(regs[j].regmap[maxscore]<0);
if(j>loop_start[maxscore]) regs[j].regmap_entry[maxscore]=reg;
regs[j].regmap[maxscore]=reg;
regs[j].dirty&=~(1<<maxscore);
regs[j].wasconst&=~(1<<maxscore);
regs[j].isconst&=~(1<<maxscore);
if(itype[j]==UJUMP||itype[j]==RJUMP||itype[j]==CJUMP||itype[j]==SJUMP||itype[j]==FJUMP) {
branch_regs[j].regmap[maxscore]=reg;
branch_regs[j].wasdirty&=~(1<<maxscore);
branch_regs[j].dirty&=~(1<<maxscore);
branch_regs[j].wasconst&=~(1<<maxscore);
branch_regs[j].isconst&=~(1<<maxscore);
if(itype[j]!=RJUMP&&itype[j]!=UJUMP&&(source[j]>>16)!=0x1000) {
regmap_pre[j+2][maxscore]=reg;
regs[j+2].wasdirty&=~(1<<maxscore);
}
// loop optimization (loop_preload)
int t=(ba[j]-start)>>2;
if(t==loop_start[maxscore]) {
if(t==1||(t>1&&itype[t-2]!=UJUMP&&itype[t-2]!=RJUMP)||(t>1&&rt1[t-2]!=31)) // call/ret assumes no registers allocated
regs[t].regmap_entry[maxscore]=reg;
}
}
else
{
if(j<1||(itype[j-1]!=RJUMP&&itype[j-1]!=UJUMP&&itype[j-1]!=CJUMP&&itype[j-1]!=SJUMP&&itype[j-1]!=FJUMP)) {
regmap_pre[j+1][maxscore]=reg;
regs[j+1].wasdirty&=~(1<<maxscore);
}
}
}
i=j-1;
if(itype[j-1]==RJUMP||itype[j-1]==UJUMP||itype[j-1]==CJUMP||itype[j-1]==SJUMP||itype[j-1]==FJUMP) i++; // skip delay slot
for(hr=0;hr<HOST_REGS;hr++) {
score[hr]=0;earliest_available[hr]=i+i;
loop_start[hr]=MAXBLOCK;
}
}
}
}
}
#endif
// This allocates registers (if possible) one instruction prior
// to use, which can avoid a load-use penalty on certain CPUs.
for(i=0;i<slen-1;i++)
{
// Avoid replacing an allocated temporary register
if(count_free_regs(regs[i].regmap)<=minimum_free_regs[i])
continue;
if(!i||(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP))
{
if(!bt[i+1])
{
if(itype[i]==ALU||itype[i]==MOV||itype[i]==LOAD||itype[i]==SHIFTIMM||itype[i]==IMM16||(itype[i]==COP1&&opcode2[i]<3))
{
if(rs1[i+1]) {
if((hr=get_reg(regs[i+1].regmap,rs1[i+1]))>=0)
{
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=regs[i+1].regmap[hr];
regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
if(rs2[i+1]) {
if((hr=get_reg(regs[i+1].regmap,rs2[i+1]))>=0)
{
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=regs[i+1].regmap[hr];
regmap_pre[i+1][hr]=regs[i+1].regmap[hr];
regs[i+1].regmap_entry[hr]=regs[i+1].regmap[hr];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
// Preload target address for load instruction (non-constant)
if(itype[i+1]==LOAD&&rs1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
{
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=rs1[i+1];
regmap_pre[i+1][hr]=rs1[i+1];
regs[i+1].regmap_entry[hr]=rs1[i+1];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
// Load source into target register
if(lt1[i+1]&&get_reg(regs[i+1].regmap,rs1[i+1])<0) {
if((hr=get_reg(regs[i+1].regmap,rt1[i+1]))>=0)
{
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=rs1[i+1];
regmap_pre[i+1][hr]=rs1[i+1];
regs[i+1].regmap_entry[hr]=rs1[i+1];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
// Preload map address
#ifndef HOST_IMM_ADDR32
if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR||itype[i+1]==C1LS) {
hr=get_reg(regs[i+1].regmap,TLREG);
if(hr>=0) {
int sr=get_reg(regs[i+1].regmap,rs1[i+1]);
if(sr>=0&&((regs[i+1].wasconst>>sr)&1)) {
int nr;
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=MGEN1+((i+1)&1);
regmap_pre[i+1][hr]=MGEN1+((i+1)&1);
regs[i+1].regmap_entry[hr]=MGEN1+((i+1)&1);
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
{
// move it to another register
regs[i+1].regmap[hr]=-1;
regmap_pre[i+2][hr]=-1;
regs[i+1].regmap[nr]=TLREG;
regmap_pre[i+2][nr]=TLREG;
regs[i].regmap[nr]=MGEN1+((i+1)&1);
regmap_pre[i+1][nr]=MGEN1+((i+1)&1);
regs[i+1].regmap_entry[nr]=MGEN1+((i+1)&1);
regs[i].isconst&=~(1<<nr);
regs[i+1].isconst&=~(1<<nr);
regs[i].dirty&=~(1<<nr);
regs[i+1].wasdirty&=~(1<<nr);
regs[i+1].dirty&=~(1<<nr);
regs[i+2].wasdirty&=~(1<<nr);
}
}
}
}
#endif
// Address for store instruction (non-constant)
if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SB/SH/SW/SD/SWC1/SDC1
if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
hr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1);
if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
else {regs[i+1].regmap[hr]=AGEN1+((i+1)&1);regs[i+1].isconst&=~(1<<hr);}
assert(hr>=0);
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=rs1[i+1];
regmap_pre[i+1][hr]=rs1[i+1];
regs[i+1].regmap_entry[hr]=rs1[i+1];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) { // LWC1/LDC1
if(get_reg(regs[i+1].regmap,rs1[i+1])<0) {
int nr;
hr=get_reg(regs[i+1].regmap,FTEMP);
assert(hr>=0);
if(regs[i].regmap[hr]<0&&regs[i+1].regmap_entry[hr]<0)
{
regs[i].regmap[hr]=rs1[i+1];
regmap_pre[i+1][hr]=rs1[i+1];
regs[i+1].regmap_entry[hr]=rs1[i+1];
regs[i].isconst&=~(1<<hr);
regs[i].isconst|=regs[i+1].isconst&(1<<hr);
constmap[i][hr]=constmap[i+1][hr];
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
else if((nr=get_reg2(regs[i].regmap,regs[i+1].regmap,-1))>=0)
{
// move it to another register
regs[i+1].regmap[hr]=-1;
regmap_pre[i+2][hr]=-1;
regs[i+1].regmap[nr]=FTEMP;
regmap_pre[i+2][nr]=FTEMP;
regs[i].regmap[nr]=rs1[i+1];
regmap_pre[i+1][nr]=rs1[i+1];
regs[i+1].regmap_entry[nr]=rs1[i+1];
regs[i].isconst&=~(1<<nr);
regs[i+1].isconst&=~(1<<nr);
regs[i].dirty&=~(1<<nr);
regs[i+1].wasdirty&=~(1<<nr);
regs[i+1].dirty&=~(1<<nr);
regs[i+2].wasdirty&=~(1<<nr);
}
}
}
if(itype[i+1]==LOAD||itype[i+1]==LOADLR||itype[i+1]==STORE||itype[i+1]==STORELR/*||itype[i+1]==C1LS*/) {
if(itype[i+1]==LOAD)
hr=get_reg(regs[i+1].regmap,rt1[i+1]);
if(itype[i+1]==LOADLR||opcode[i+1]==0x31||opcode[i+1]==0x35) // LWC1/LDC1
hr=get_reg(regs[i+1].regmap,FTEMP);
if(itype[i+1]==STORE||itype[i+1]==STORELR||opcode[i+1]==0x39||opcode[i+1]==0x3D) { // SWC1/SDC1
hr=get_reg(regs[i+1].regmap,AGEN1+((i+1)&1));
if(hr<0) hr=get_reg(regs[i+1].regmap,-1);
}
if(hr>=0&&regs[i].regmap[hr]<0) {
int rs=get_reg(regs[i+1].regmap,rs1[i+1]);
if(rs>=0&&((regs[i+1].wasconst>>rs)&1)) {
regs[i].regmap[hr]=AGEN1+((i+1)&1);
regmap_pre[i+1][hr]=AGEN1+((i+1)&1);
regs[i+1].regmap_entry[hr]=AGEN1+((i+1)&1);
regs[i].isconst&=~(1<<hr);
regs[i+1].wasdirty&=~(1<<hr);
regs[i].dirty&=~(1<<hr);
}
}
}
}
}
}
}
/* Pass 6 - Optimize clean/dirty state */
clean_registers(0,slen-1,1);
/* Pass 7 - Identify 32-bit registers */
provisional_r32();
u_int r32=0;
for (i=slen-1;i>=0;i--)
{
int hr;
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
if(ba[i]<start || ba[i]>=(start+slen*4))
{
// Branch out of this block, don't need anything
r32=0;
}
else
{
// Internal branch
// Need whatever matches the target
// (and doesn't get overwritten by the delay slot instruction)
r32=0;
int t=(ba[i]-start)>>2;
if(ba[i]>start+i*4) {
// Forward branch
if(!(requires_32bit[t]&~regs[i].was32))
r32|=requires_32bit[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
}else{
// Backward branch
//if(!(regs[t].was32&~unneeded_reg_upper[t]&~regs[i].was32))
// r32|=regs[t].was32&~unneeded_reg_upper[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
if(!(pr32[t]&~regs[i].was32))
r32|=pr32[t]&(~(1LL<<rt1[i+1]))&(~(1LL<<rt2[i+1]));
}
}
// Conditional branch may need registers for following instructions
if(itype[i]!=RJUMP&&itype[i]!=UJUMP&&(source[i]>>16)!=0x1000)
{
if(i<slen-2) {
r32|=requires_32bit[i+2];
r32&=regs[i].was32;
// Mark this address as a branch target since it may be called
// upon return from interrupt
bt[i+2]=1;
}
}
// Merge in delay slot
if(!likely[i]) {
// These are overwritten unless the branch is "likely"
// and the delay slot is nullified if not taken
r32&=~(1LL<<rt1[i+1]);
r32&=~(1LL<<rt2[i+1]);
}
// Assume these are needed (delay slot)
if(us1[i+1]>0)
{
if((regs[i].was32>>us1[i+1])&1) r32|=1LL<<us1[i+1];
}
if(us2[i+1]>0)
{
if((regs[i].was32>>us2[i+1])&1) r32|=1LL<<us2[i+1];
}
if(dep1[i+1]&&!((unneeded_reg_upper[i]>>dep1[i+1])&1))
{
if((regs[i].was32>>dep1[i+1])&1) r32|=1LL<<dep1[i+1];
}
if(dep2[i+1]&&!((unneeded_reg_upper[i]>>dep2[i+1])&1))
{
if((regs[i].was32>>dep2[i+1])&1) r32|=1LL<<dep2[i+1];
}
}
else if(itype[i]==SYSCALL)
{
// SYSCALL instruction (software interrupt)
r32=0;
}
else if(itype[i]==COP0 && (source[i]&0x3f)==0x18)
{
// ERET instruction (return from interrupt)
r32=0;
}
// Check 32 bits
r32&=~(1LL<<rt1[i]);
r32&=~(1LL<<rt2[i]);
if(us1[i]>0)
{
if((regs[i].was32>>us1[i])&1) r32|=1LL<<us1[i];
}
if(us2[i]>0)
{
if((regs[i].was32>>us2[i])&1) r32|=1LL<<us2[i];
}
if(dep1[i]&&!((unneeded_reg_upper[i]>>dep1[i])&1))
{
if((regs[i].was32>>dep1[i])&1) r32|=1LL<<dep1[i];
}
if(dep2[i]&&!((unneeded_reg_upper[i]>>dep2[i])&1))
{
if((regs[i].was32>>dep2[i])&1) r32|=1LL<<dep2[i];
}
requires_32bit[i]=r32;
// Dirty registers which are 32-bit, require 32-bit input
// as they will be written as 32-bit values
for(hr=0;hr<HOST_REGS;hr++)
{
if(regs[i].regmap_entry[hr]>0&&regs[i].regmap_entry[hr]<64) {
if((regs[i].was32>>regs[i].regmap_entry[hr])&(regs[i].wasdirty>>hr)&1) {
if(!((unneeded_reg_upper[i]>>regs[i].regmap_entry[hr])&1))
requires_32bit[i]|=1LL<<regs[i].regmap_entry[hr];
}
}
}
//requires_32bit[i]=is32[i]&~unneeded_reg_upper[i]; // DEBUG
}
if(itype[slen-1]==SPAN) {
bt[slen-1]=1; // Mark as a branch target so instruction can restart after exception
}
/* Debug/disassembly */
#if ASSEM_DEBUG
for(i=0;i<slen;i++)
{
DebugMessage(M64MSG_VERBOSE, "U:");
int r;
for(r=1;r<=CCREG;r++) {
if((unneeded_reg[i]>>r)&1) {
if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
DebugMessage(M64MSG_VERBOSE, " UU:");
for(r=1;r<=CCREG;r++) {
if(((unneeded_reg_upper[i]&~unneeded_reg[i])>>r)&1) {
if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
DebugMessage(M64MSG_VERBOSE, " 32:");
for(r=0;r<=CCREG;r++) {
//if(((is32[i]>>r)&(~unneeded_reg[i]>>r))&1) {
if((regs[i].was32>>r)&1) {
if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
#if NEW_DYNAREC == NEW_DYNAREC_X86
DebugMessage(M64MSG_VERBOSE, "pre: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7]);
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
DebugMessage(M64MSG_VERBOSE, "pre: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d",regmap_pre[i][0],regmap_pre[i][1],regmap_pre[i][2],regmap_pre[i][3],regmap_pre[i][4],regmap_pre[i][5],regmap_pre[i][6],regmap_pre[i][7],regmap_pre[i][8],regmap_pre[i][9],regmap_pre[i][10],regmap_pre[i][12]);
#endif
DebugMessage(M64MSG_VERBOSE, "needs: ");
if(needed_reg[i]&1) DebugMessage(M64MSG_VERBOSE, "eax ");
if((needed_reg[i]>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
if((needed_reg[i]>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
if((needed_reg[i]>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
if((needed_reg[i]>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
if((needed_reg[i]>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
if((needed_reg[i]>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
DebugMessage(M64MSG_VERBOSE, "r:");
for(r=0;r<=CCREG;r++) {
//if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
if((requires_32bit[i]>>r)&1) {
if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
/*DebugMessage(M64MSG_VERBOSE, "pr:");
for(r=0;r<=CCREG;r++) {
//if(((requires_32bit[i]>>r)&(~unneeded_reg[i]>>r))&1) {
if((pr32[i]>>r)&1) {
if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
if(pr32[i]!=requires_32bit[i]) DebugMessage(M64MSG_ERROR, " OOPS");*/
#if NEW_DYNAREC == NEW_DYNAREC_X86
DebugMessage(M64MSG_VERBOSE, "entry: eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7]);
DebugMessage(M64MSG_VERBOSE, "dirty: ");
if(regs[i].wasdirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
if((regs[i].wasdirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
if((regs[i].wasdirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
if((regs[i].wasdirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
if((regs[i].wasdirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
if((regs[i].wasdirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
if((regs[i].wasdirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
DebugMessage(M64MSG_VERBOSE, "entry: r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d",regs[i].regmap_entry[0],regs[i].regmap_entry[1],regs[i].regmap_entry[2],regs[i].regmap_entry[3],regs[i].regmap_entry[4],regs[i].regmap_entry[5],regs[i].regmap_entry[6],regs[i].regmap_entry[7],regs[i].regmap_entry[8],regs[i].regmap_entry[9],regs[i].regmap_entry[10],regs[i].regmap_entry[12]);
DebugMessage(M64MSG_VERBOSE, "dirty: ");
if(regs[i].wasdirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
if((regs[i].wasdirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
if((regs[i].wasdirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
if((regs[i].wasdirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
if((regs[i].wasdirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
if((regs[i].wasdirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
if((regs[i].wasdirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
if((regs[i].wasdirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
if((regs[i].wasdirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
if((regs[i].wasdirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
if((regs[i].wasdirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
if((regs[i].wasdirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
#endif
disassemble_inst(i);
//printf ("ccadj[%d] = %d",i,ccadj[i]);
#if NEW_DYNAREC == NEW_DYNAREC_X86
DebugMessage(M64MSG_VERBOSE, "eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7]);
if(regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
if((regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
if((regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
if((regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
if((regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
if((regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
if((regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
DebugMessage(M64MSG_VERBOSE, "r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",regs[i].regmap[0],regs[i].regmap[1],regs[i].regmap[2],regs[i].regmap[3],regs[i].regmap[4],regs[i].regmap[5],regs[i].regmap[6],regs[i].regmap[7],regs[i].regmap[8],regs[i].regmap[9],regs[i].regmap[10],regs[i].regmap[12]);
if(regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
if((regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
if((regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
if((regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
if((regs[i].dirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
if((regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
if((regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
if((regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
if((regs[i].dirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
if((regs[i].dirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
if((regs[i].dirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
if((regs[i].dirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
#endif
if(regs[i].isconst) {
DebugMessage(M64MSG_VERBOSE, "constants: ");
#if NEW_DYNAREC == NEW_DYNAREC_X86
if(regs[i].isconst&1) DebugMessage(M64MSG_VERBOSE, "eax=%x ",(int)constmap[i][0]);
if((regs[i].isconst>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx=%x ",(int)constmap[i][1]);
if((regs[i].isconst>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx=%x ",(int)constmap[i][2]);
if((regs[i].isconst>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx=%x ",(int)constmap[i][3]);
if((regs[i].isconst>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp=%x ",(int)constmap[i][5]);
if((regs[i].isconst>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi=%x ",(int)constmap[i][6]);
if((regs[i].isconst>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi=%x ",(int)constmap[i][7]);
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
if(regs[i].isconst&1) DebugMessage(M64MSG_VERBOSE, "r0=%x ",(int)constmap[i][0]);
if((regs[i].isconst>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1=%x ",(int)constmap[i][1]);
if((regs[i].isconst>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2=%x ",(int)constmap[i][2]);
if((regs[i].isconst>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3=%x ",(int)constmap[i][3]);
if((regs[i].isconst>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4=%x ",(int)constmap[i][4]);
if((regs[i].isconst>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5=%x ",(int)constmap[i][5]);
if((regs[i].isconst>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6=%x ",(int)constmap[i][6]);
if((regs[i].isconst>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7=%x ",(int)constmap[i][7]);
if((regs[i].isconst>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8=%x ",(int)constmap[i][8]);
if((regs[i].isconst>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9=%x ",(int)constmap[i][9]);
if((regs[i].isconst>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10=%x ",(int)constmap[i][10]);
if((regs[i].isconst>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12=%x ",(int)constmap[i][12]);
#endif
}
DebugMessage(M64MSG_VERBOSE, " 32:");
for(r=0;r<=CCREG;r++) {
if((regs[i].is32>>r)&1) {
if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
/*DebugMessage(M64MSG_VERBOSE, " p32:");
for(r=0;r<=CCREG;r++) {
if((p32[i]>>r)&1) {
if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
if(p32[i]!=regs[i].is32) DebugMessage(M64MSG_VERBOSE, " NO MATCH");*/
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP) {
#if NEW_DYNAREC == NEW_DYNAREC_X86
DebugMessage(M64MSG_VERBOSE, "branch(%d): eax=%d ecx=%d edx=%d ebx=%d ebp=%d esi=%d edi=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7]);
if(branch_regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "eax ");
if((branch_regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "ecx ");
if((branch_regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "edx ");
if((branch_regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "ebx ");
if((branch_regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "ebp ");
if((branch_regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "esi ");
if((branch_regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "edi ");
#endif
#if NEW_DYNAREC == NEW_DYNAREC_ARM
DebugMessage(M64MSG_VERBOSE, "branch(%d): r0=%d r1=%d r2=%d r3=%d r4=%d r5=%d r6=%d r7=%d r8=%d r9=%d r10=%d r12=%d dirty: ",i,branch_regs[i].regmap[0],branch_regs[i].regmap[1],branch_regs[i].regmap[2],branch_regs[i].regmap[3],branch_regs[i].regmap[4],branch_regs[i].regmap[5],branch_regs[i].regmap[6],branch_regs[i].regmap[7],branch_regs[i].regmap[8],branch_regs[i].regmap[9],branch_regs[i].regmap[10],branch_regs[i].regmap[12]);
if(branch_regs[i].dirty&1) DebugMessage(M64MSG_VERBOSE, "r0 ");
if((branch_regs[i].dirty>>1)&1) DebugMessage(M64MSG_VERBOSE, "r1 ");
if((branch_regs[i].dirty>>2)&1) DebugMessage(M64MSG_VERBOSE, "r2 ");
if((branch_regs[i].dirty>>3)&1) DebugMessage(M64MSG_VERBOSE, "r3 ");
if((branch_regs[i].dirty>>4)&1) DebugMessage(M64MSG_VERBOSE, "r4 ");
if((branch_regs[i].dirty>>5)&1) DebugMessage(M64MSG_VERBOSE, "r5 ");
if((branch_regs[i].dirty>>6)&1) DebugMessage(M64MSG_VERBOSE, "r6 ");
if((branch_regs[i].dirty>>7)&1) DebugMessage(M64MSG_VERBOSE, "r7 ");
if((branch_regs[i].dirty>>8)&1) DebugMessage(M64MSG_VERBOSE, "r8 ");
if((branch_regs[i].dirty>>9)&1) DebugMessage(M64MSG_VERBOSE, "r9 ");
if((branch_regs[i].dirty>>10)&1) DebugMessage(M64MSG_VERBOSE, "r10 ");
if((branch_regs[i].dirty>>12)&1) DebugMessage(M64MSG_VERBOSE, "r12 ");
#endif
DebugMessage(M64MSG_VERBOSE, " 32:");
for(r=0;r<=CCREG;r++) {
if((branch_regs[i].is32>>r)&1) {
if(r==CCREG) DebugMessage(M64MSG_VERBOSE, " CC");
else if(r==HIREG) DebugMessage(M64MSG_VERBOSE, " HI");
else if(r==LOREG) DebugMessage(M64MSG_VERBOSE, " LO");
else DebugMessage(M64MSG_VERBOSE, " r%d",r);
}
}
}
}
#endif
/* Pass 8 - Assembly */
linkcount=0;stubcount=0;
ds=0;is_delayslot=0;
cop1_usable=0;
dirty_entry_count=0;
#ifndef DESTRUCTIVE_WRITEBACK
uint64_t is32_pre=0;
u_int dirty_pre=0;
#endif
copy=NULL;
copy=(char*)malloc((slen*4)+4);
assert(copy);
copy_size+=((slen*4)+4);
//DebugMessage(M64MSG_VERBOSE, "Currently used memory for copy: %d",copy_size);
u_int beginning=(u_int)out;
if((u_int)addr&1) {
ds=1;
pagespan_ds();
}
for(i=0;i<slen;i++)
{
#if ASSEM_DEBUG
disassemble_inst(i);
#endif
if(ds) {
ds=0; // Skip delay slot
if(bt[i]) assem_debug("OOPS - branch into delay slot");
instr_addr[i]=0;
} else {
#ifndef DESTRUCTIVE_WRITEBACK
if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
{
wb_sx(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,is32_pre,regs[i].was32,
unneeded_reg[i],unneeded_reg_upper[i]);
wb_valid(regmap_pre[i],regs[i].regmap_entry,dirty_pre,regs[i].wasdirty,is32_pre,
unneeded_reg[i],unneeded_reg_upper[i]);
}
is32_pre=regs[i].is32;
dirty_pre=regs[i].dirty;
#endif
// write back
if(i<2||(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000))
{
wb_invalidate(regmap_pre[i],regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32,
unneeded_reg[i],unneeded_reg_upper[i]);
loop_preload(regmap_pre[i],regs[i].regmap_entry);
}
// branch target entry point
instr_addr[i]=(u_int)out;
assem_debug("<->");
// load regs
if(regs[i].regmap_entry[HOST_CCREG]==CCREG&&regs[i].regmap[HOST_CCREG]!=CCREG)
wb_register(CCREG,regs[i].regmap_entry,regs[i].wasdirty,regs[i].was32);
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i],rs2[i]);
address_generation(i,&regs[i],regs[i].regmap_entry);
load_consts(regmap_pre[i],regs[i].regmap,regs[i].was32,i);
if(itype[i]==RJUMP||itype[i]==UJUMP||itype[i]==CJUMP||itype[i]==SJUMP||itype[i]==FJUMP)
{
// Load the delay slot registers if necessary
if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
if(itype[i+1]==STORE||itype[i+1]==STORELR||(opcode[i+1]&0x3b)==0x39)
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
}
else if(i+1<slen)
{
// Preload registers for following instruction
if(rs1[i+1]!=rs1[i]&&rs1[i+1]!=rs2[i])
if(rs1[i+1]!=rt1[i]&&rs1[i+1]!=rt2[i])
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs1[i+1],rs1[i+1]);
if(rs2[i+1]!=rs1[i+1]&&rs2[i+1]!=rs1[i]&&rs2[i+1]!=rs2[i])
if(rs2[i+1]!=rt1[i]&&rs2[i+1]!=rt2[i])
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,rs2[i+1],rs2[i+1]);
}
// TODO: if(is_ooo(i)) address_generation(i+1);
if(itype[i]==CJUMP||itype[i]==FJUMP)
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,CCREG,CCREG);
if(itype[i]==LOAD||itype[i]==LOADLR||itype[i]==STORE||itype[i]==STORELR||itype[i]==C1LS)
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,MMREG,ROREG);
if(itype[i]==STORE||itype[i]==STORELR||(opcode[i]&0x3b)==0x39)
load_regs(regs[i].regmap_entry,regs[i].regmap,regs[i].was32,INVCP,INVCP);
if(bt[i]) cop1_usable=0;
// assemble
switch(itype[i]) {
case ALU:
alu_assemble(i,&regs[i]);break;
case IMM16:
imm16_assemble(i,&regs[i]);break;
case SHIFT:
shift_assemble(i,&regs[i]);break;
case SHIFTIMM:
shiftimm_assemble(i,&regs[i]);break;
case LOAD:
load_assemble(i,&regs[i]);break;
case LOADLR:
loadlr_assemble(i,&regs[i]);break;
case STORE:
store_assemble(i,&regs[i]);break;
case STORELR:
storelr_assemble(i,&regs[i]);break;
case COP0:
cop0_assemble(i,&regs[i]);break;
case COP1:
cop1_assemble(i,&regs[i]);break;
case C1LS:
c1ls_assemble(i,&regs[i]);break;
case FCONV:
fconv_assemble(i,&regs[i]);break;
case FLOAT:
float_assemble(i,&regs[i]);break;
case FCOMP:
fcomp_assemble(i,&regs[i]);break;
case MULTDIV:
multdiv_assemble(i,&regs[i]);break;
case MOV:
mov_assemble(i,&regs[i]);break;
case SYSCALL:
syscall_assemble(i,&regs[i]);break;
case UJUMP:
ujump_assemble(i,&regs[i]);ds=1;break;
case RJUMP:
rjump_assemble(i,&regs[i]);ds=1;break;
case CJUMP:
cjump_assemble(i,&regs[i]);ds=1;break;
case SJUMP:
sjump_assemble(i,&regs[i]);ds=1;break;
case FJUMP:
fjump_assemble(i,&regs[i]);ds=1;break;
case SPAN:
pagespan_assemble(i,&regs[i]);break;
}
if(itype[i]==UJUMP||itype[i]==RJUMP||(source[i]>>16)==0x1000)
literal_pool(1024);
else
literal_pool_jumpover(256);
}
}
//assert(itype[i-2]==UJUMP||itype[i-2]==RJUMP||(source[i-2]>>16)==0x1000);
// If the block did not end with an unconditional branch,
// add a jump to the next instruction.
if(i>1) {
if(itype[i-2]!=UJUMP&&itype[i-2]!=RJUMP&&(source[i-2]>>16)!=0x1000&&itype[i-1]!=SPAN) {
assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
assert(i==slen);
if(itype[i-2]!=CJUMP&&itype[i-2]!=SJUMP&&itype[i-2]!=FJUMP) {
store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
}
else if(!likely[i-2])
{
store_regs_bt(branch_regs[i-2].regmap,branch_regs[i-2].is32,branch_regs[i-2].dirty,start+i*4);
assert(branch_regs[i-2].regmap[HOST_CCREG]==CCREG);
}
else
{
store_regs_bt(regs[i-2].regmap,regs[i-2].is32,regs[i-2].dirty,start+i*4);
assert(regs[i-2].regmap[HOST_CCREG]==CCREG);
}
add_to_linker((int)out,start+i*4,0);
emit_jmp(0);
}
}
else
{
assert(i>0);
assert(itype[i-1]!=UJUMP&&itype[i-1]!=CJUMP&&itype[i-1]!=SJUMP&&itype[i-1]!=RJUMP&&itype[i-1]!=FJUMP);
store_regs_bt(regs[i-1].regmap,regs[i-1].is32,regs[i-1].dirty,start+i*4);
if(regs[i-1].regmap[HOST_CCREG]!=CCREG)
emit_loadreg(CCREG,HOST_CCREG);
emit_addimm(HOST_CCREG,CLOCK_DIVIDER*(ccadj[i-1]+1),HOST_CCREG);
add_to_linker((int)out,start+i*4,0);
emit_jmp(0);
}
// TODO: delay slot stubs?
// Stubs
for(i=0;i<stubcount;i++)
{
switch(stubs[i][0])
{
case LOADB_STUB:
case LOADH_STUB:
case LOADW_STUB:
case LOADD_STUB:
case LOADBU_STUB:
case LOADHU_STUB:
do_readstub(i);break;
case STOREB_STUB:
case STOREH_STUB:
case STOREW_STUB:
case STORED_STUB:
do_writestub(i);break;
case CC_STUB:
do_ccstub(i);break;
case INVCODE_STUB:
do_invstub(i);break;
case FP_STUB:
do_cop1stub(i);break;
case STORELR_STUB:
do_unalignedwritestub(i);break;
}
}
/* Pass 9 - Linker */
for(i=0;i<linkcount;i++)
{
assem_debug("%8x -> %8x",link_addr[i][0],link_addr[i][1]);
literal_pool(64);
if(!link_addr[i][2])
{
void *stub=out;
void *addr=check_addr(link_addr[i][1]);
emit_extjump(link_addr[i][0],link_addr[i][1]);
if(addr) {
set_jump_target(link_addr[i][0],(int)addr);
add_link(link_addr[i][1],stub);
}
else set_jump_target(link_addr[i][0],(int)stub);
}
else
{
// Internal branch
int target=(link_addr[i][1]-start)>>2;
assert(target>=0&&target<slen);
assert(instr_addr[target]);
//#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
//set_jump_target_fillslot(link_addr[i][0],instr_addr[target],link_addr[i][2]>>1);
//#else
set_jump_target(link_addr[i][0],instr_addr[target]);
//#endif
}
}
// External Branch Targets (jump_in)
for(i=0;i<slen;i++)
{
if(bt[i]||i==0)
{
if(instr_addr[i]) // TODO - delay slots (=null)
{
u_int vaddr=start+i*4;
u_int page=(0x80000000^vaddr)>>12;
u_int vpage=page;
if(page>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) page=(g_dev.r4300.cp0.tlb.LUT_r[page^0x80000]^0x80000000)>>12;
if(page>2048) page=2048+(page&2047);
if(vpage>262143&&g_dev.r4300.cp0.tlb.LUT_r[vaddr>>12]) vpage&=2047; // jump_dirty uses a hash of the virtual address instead
if(vpage>2048) vpage=2048+(vpage&2047);
literal_pool(256);
//if(!(is32[i]&(~unneeded_reg_upper[i])&~(1LL<<CCREG)))
if(!requires_32bit[i])
{
assem_debug("%8x (%d) <- %8x",instr_addr[i],i,start+i*4);
assem_debug("jump_in: %x",start+i*4);
ll_add(jump_dirty+vpage,vaddr,(void *)out);
dirty_entry_count++;
int entry_point=do_dirty_stub(i);
ll_add(jump_in+page,vaddr,(void *)entry_point);
// If there was an existing entry in the hash table,
// replace it with the new address.
// Don't add new entries. We'll insert the
// ones that actually get used in check_addr().
u_int *ht_bin=hash_table[((vaddr>>16)^vaddr)&0xFFFF];
if(ht_bin[0]==vaddr) {
ht_bin[1]=entry_point;
}
if(ht_bin[2]==vaddr) {
ht_bin[3]=entry_point;
}
}
else
{
u_int r=requires_32bit[i]|!!(requires_32bit[i]>>32);
assem_debug("%8x (%d) <- %8x",instr_addr[i],i,start+i*4);
assem_debug("jump_in: %x (restricted - %x)",start+i*4,r);
//int entry_point=(int)out;
////assem_debug("entry_point: %x",entry_point);
//load_regs_entry(i);
//if(entry_point==(int)out)
// entry_point=instr_addr[i];
//else
// emit_jmp(instr_addr[i]);
//ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
ll_add_32(jump_dirty+vpage,vaddr,r,(void *)out);
dirty_entry_count++;
int entry_point=do_dirty_stub(i);
ll_add_32(jump_in+page,vaddr,r,(void *)entry_point);
}
}
}
}
// Write out the literal pool if necessary
literal_pool(0);
#ifdef CORTEX_A8_BRANCH_PREDICTION_HACK
// Align code
if(((u_int)out)&7) emit_addnop(13);
#endif
assert((u_int)out-beginning<MAX_OUTPUT_BLOCK_SIZE);
memcpy(copy,(char*)source,slen*4);
u_int *ptr=(u_int*)copy;
ptr[slen]=dirty_entry_count;
#if NEW_DYNAREC == NEW_DYNAREC_ARM
__clear_cache((void *)beginning,out);
//cacheflush((void *)beginning,out,0);
#endif
// If we're within 256K of the end of the buffer,
// start over from the beginning. (Is 256K enough?)
if(out > (u_char *)((u_char *)base_addr+(1<<TARGET_SIZE_2)-MAX_OUTPUT_BLOCK_SIZE-JUMP_TABLE_SIZE))
out=(u_char *)base_addr;
// Trap writes to any of the pages we compiled
for(i=start>>12;i<=(int)((start+slen*4-4)>>12);i++) {
g_dev.r4300.cached_interp.invalid_code[i]=0;
memory_map[i]|=0x40000000;
if((signed int)start>=(signed int)0xC0000000) {
assert(using_tlb);
assert(memory_map[i]!=-1);
j=(((u_int)i<<12)+(memory_map[i]<<2)-(u_int)g_dev.ri.rdram.dram+(u_int)0x80000000)>>12;
g_dev.r4300.cached_interp.invalid_code[j]=0;
memory_map[j]|=0x40000000;
//DebugMessage(M64MSG_VERBOSE, "write protect physical page: %x (virtual %x)",j<<12,start);
}
}
/* Pass 10 - Free memory by expiring oldest blocks */
int end=((((intptr_t)out-(intptr_t)base_addr)>>(TARGET_SIZE_2-16))+16384)&65535;
while(expirep!=end)
{
int shift=TARGET_SIZE_2-3; // Divide into 8 blocks
int base=(int)base_addr+((expirep>>13)<<shift); // Base address of this block
inv_debug("EXP: Phase %d\n",expirep);
switch((expirep>>11)&3)
{
case 0:
// Clear jump_in and jump_dirty
ll_remove_matching_addrs(jump_in+(expirep&2047),base,shift);
ll_remove_matching_addrs(jump_dirty+(expirep&2047),base,shift);
ll_remove_matching_addrs(jump_in+2048+(expirep&2047),base,shift);
ll_remove_matching_addrs(jump_dirty+2048+(expirep&2047),base,shift);
break;
case 1:
// Clear pointers
ll_kill_pointers(jump_out[expirep&2047],base,shift);
ll_kill_pointers(jump_out[(expirep&2047)+2048],base,shift);
break;
case 2:
// Clear hash table
for(i=0;i<32;i++) {
u_int *ht_bin=hash_table[((expirep&2047)<<5)+i];
if(((ht_bin[3]-(u_int)base_addr)>>shift)==((base-(u_int)base_addr)>>shift) ||
((ht_bin[3]-(u_int)base_addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==((base-(u_int)base_addr)>>shift)) {
inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[2],ht_bin[3]);
ht_bin[2]=ht_bin[3]=-1;
}
if(((ht_bin[1]-(u_int)base_addr)>>shift)==((base-(u_int)base_addr)>>shift) ||
((ht_bin[1]-(u_int)base_addr-MAX_OUTPUT_BLOCK_SIZE)>>shift)==((base-(u_int)base_addr)>>shift)) {
inv_debug("EXP: Remove hash %x -> %x\n",ht_bin[0],ht_bin[1]);
ht_bin[0]=ht_bin[2];
ht_bin[1]=ht_bin[3];
ht_bin[2]=ht_bin[3]=-1;
}
}
break;
case 3:
// Clear jump_out
#if NEW_DYNAREC == NEW_DYNAREC_ARM
if((expirep&2047)==0)
do_clear_cache();
#endif
ll_remove_matching_addrs(jump_out+(expirep&2047),base,shift);
ll_remove_matching_addrs(jump_out+2048+(expirep&2047),base,shift);
break;
}
expirep=(expirep+1)&65535;
}
return 0;
}
/* interpreted opcode */
static void div64(int64_t dividend,int64_t divisor)
{
if(divisor) {
*r4300_mult_lo()=dividend/divisor;
*r4300_mult_hi()=dividend%divisor;
}
}
static void divu64(uint64_t dividend,uint64_t divisor)
{
if(divisor) {
*r4300_mult_lo()=dividend/divisor;
*r4300_mult_hi()=dividend%divisor;
}
}
static uint64_t ldl_merge(uint64_t original,uint64_t loaded,u_int bits)
{
if(bits) {
original<<=64-bits;
original>>=64-bits;
loaded<<=bits;
original|=loaded;
}
else original=loaded;
return original;
}
static uint64_t ldr_merge(uint64_t original,uint64_t loaded,u_int bits)
{
if(bits^56) {
original>>=64-(bits^56);
original<<=64-(bits^56);
loaded>>=bits^56;
original|=loaded;
}
else original=loaded;
return original;
}
static void TLBWI_new(void)
{
unsigned int i;
/* Remove old entries */
unsigned int old_start_even=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].start_even;
unsigned int old_end_even=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].end_even;
unsigned int old_start_odd=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].start_odd;
unsigned int old_end_odd=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].end_odd;
for (i=old_start_even>>12; i<=old_end_even>>12; i++)
{
if(i<0x80000||i>0xBFFFF)
{
invalidate_block(i);
memory_map[i]=-1;
}
}
for (i=old_start_odd>>12; i<=old_end_odd>>12; i++)
{
if(i<0x80000||i>0xBFFFF)
{
invalidate_block(i);
memory_map[i]=-1;
}
}
cached_interpreter_table.TLBWI();
//DebugMessage(M64MSG_VERBOSE, "TLBWI: index=%d",r4300_cp0_regs()[CP0_INDEX_REG]);
//DebugMessage(M64MSG_VERBOSE, "TLBWI: start_even=%x end_even=%x phys_even=%x v=%d d=%d",g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].start_even,g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].end_even,g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].phys_even,g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].v_even,g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].d_even);
//DebugMessage(M64MSG_VERBOSE, "TLBWI: start_odd=%x end_odd=%x phys_odd=%x v=%d d=%d",g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].start_odd,g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].end_odd,g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].phys_odd,g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].v_odd,g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].d_odd);
/* Combine g_dev.r4300.cp0.tlb.LUT_r, g_dev.r4300.cp0.tlb.LUT_w, and invalid_code into a single table
for fast look up. */
for (i=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].start_even>>12; i<=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].end_even>>12; i++)
{
//DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,g_dev.r4300.cp0.tlb.LUT_r[i],g_dev.r4300.cp0.tlb.LUT_w[i]);
if(i<0x80000||i>0xBFFFF)
{
if(g_dev.r4300.cp0.tlb.LUT_r[i]) {
memory_map[i]=((g_dev.r4300.cp0.tlb.LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)g_dev.ri.rdram.dram-0x80000000)>>2;
// FIXME: should make sure the physical page is invalid too
if(!g_dev.r4300.cp0.tlb.LUT_w[i]||!g_dev.r4300.cached_interp.invalid_code[i]) {
memory_map[i]|=0x40000000; // Write protect
}else{
assert(g_dev.r4300.cp0.tlb.LUT_r[i]==g_dev.r4300.cp0.tlb.LUT_w[i]);
}
if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
// Tell the dynamic recompiler to generate tlb lookup code
using_tlb=1;
}
else memory_map[i]=-1;
}
//DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
}
for (i=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].start_odd>>12; i<=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_INDEX_REG]&0x3F].end_odd>>12; i++)
{
//DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,g_dev.r4300.cp0.tlb.LUT_r[i],g_dev.r4300.cp0.tlb.LUT_w[i]);
if(i<0x80000||i>0xBFFFF)
{
if(g_dev.r4300.cp0.tlb.LUT_r[i]) {
memory_map[i]=((g_dev.r4300.cp0.tlb.LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)g_dev.ri.rdram.dram-0x80000000)>>2;
// FIXME: should make sure the physical page is invalid too
if(!g_dev.r4300.cp0.tlb.LUT_w[i]||!g_dev.r4300.cached_interp.invalid_code[i]) {
memory_map[i]|=0x40000000; // Write protect
}else{
assert(g_dev.r4300.cp0.tlb.LUT_r[i]==g_dev.r4300.cp0.tlb.LUT_w[i]);
}
if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
// Tell the dynamic recompiler to generate tlb lookup code
using_tlb=1;
}
else memory_map[i]=-1;
}
//DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
}
}
static void TLBWR_new(void)
{
unsigned int i;
r4300_cp0_regs()[CP0_RANDOM_REG] = (r4300_cp0_regs()[CP0_COUNT_REG]/2 % (32 - r4300_cp0_regs()[CP0_WIRED_REG])) + r4300_cp0_regs()[CP0_WIRED_REG];
/* Remove old entries */
unsigned int old_start_even=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_RANDOM_REG]&0x3F].start_even;
unsigned int old_end_even=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_RANDOM_REG]&0x3F].end_even;
unsigned int old_start_odd=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_RANDOM_REG]&0x3F].start_odd;
unsigned int old_end_odd=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_RANDOM_REG]&0x3F].end_odd;
for (i=old_start_even>>12; i<=old_end_even>>12; i++)
{
if(i<0x80000||i>0xBFFFF)
{
invalidate_block(i);
memory_map[i]=-1;
}
}
for (i=old_start_odd>>12; i<=old_end_odd>>12; i++)
{
if(i<0x80000||i>0xBFFFF)
{
invalidate_block(i);
memory_map[i]=-1;
}
}
cached_interpreter_table.TLBWR();
/* Combine g_dev.r4300.cp0.tlb.LUT_r, g_dev.r4300.cp0.tlb.LUT_w, and invalid_code into a single table
for fast look up. */
for (i=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_RANDOM_REG]&0x3F].start_even>>12; i<=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_RANDOM_REG]&0x3F].end_even>>12; i++)
{
//DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,g_dev.r4300.cp0.tlb.LUT_r[i],g_dev.r4300.cp0.tlb.LUT_w[i]);
if(i<0x80000||i>0xBFFFF)
{
if(g_dev.r4300.cp0.tlb.LUT_r[i]) {
memory_map[i]=((g_dev.r4300.cp0.tlb.LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)g_dev.ri.rdram.dram-0x80000000)>>2;
// FIXME: should make sure the physical page is invalid too
if(!g_dev.r4300.cp0.tlb.LUT_w[i]||!g_dev.r4300.cached_interp.invalid_code[i]) {
memory_map[i]|=0x40000000; // Write protect
}else{
assert(g_dev.r4300.cp0.tlb.LUT_r[i]==g_dev.r4300.cp0.tlb.LUT_w[i]);
}
if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
// Tell the dynamic recompiler to generate tlb lookup code
using_tlb=1;
}
else memory_map[i]=-1;
}
//DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
}
for (i=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_RANDOM_REG]&0x3F].start_odd>>12; i<=g_dev.r4300.cp0.tlb.entries[r4300_cp0_regs()[CP0_RANDOM_REG]&0x3F].end_odd>>12; i++)
{
//DebugMessage(M64MSG_VERBOSE, "%x: r:%8x w:%8x",i,g_dev.r4300.cp0.tlb.LUT_r[i],g_dev.r4300.cp0.tlb.LUT_w[i]);
if(i<0x80000||i>0xBFFFF)
{
if(g_dev.r4300.cp0.tlb.LUT_r[i]) {
memory_map[i]=((g_dev.r4300.cp0.tlb.LUT_r[i]&0xFFFFF000)-(i<<12)+(unsigned int)g_dev.ri.rdram.dram-0x80000000)>>2;
// FIXME: should make sure the physical page is invalid too
if(!g_dev.r4300.cp0.tlb.LUT_w[i]||!g_dev.r4300.cached_interp.invalid_code[i]) {
memory_map[i]|=0x40000000; // Write protect
}else{
assert(g_dev.r4300.cp0.tlb.LUT_r[i]==g_dev.r4300.cp0.tlb.LUT_w[i]);
}
if(!using_tlb) DebugMessage(M64MSG_VERBOSE, "Enabled TLB");
// Tell the dynamic recompiler to generate tlb lookup code
using_tlb=1;
}
else memory_map[i]=-1;
}
//DebugMessage(M64MSG_VERBOSE, "memory_map[%x]: %8x (+%8x)",i,memory_map[i],memory_map[i]<<2);
}
}